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8.5 Determinants and Cramer’s Rule

8.5.1 Definition and Properties of the Determinant

In this section we assign to each square matrix A a real number, called the determinant of A,
which will eventually lead us to yet another technique for solving consistent independent systems
of linear equations. The determinant is defined recursively, that is, we define it for 1× 1 matrices
and give a rule by which we can reduce determinants of n × n matrices to a sum of determinants
of (n− 1)× (n− 1) matrices.1 This means we will be able to evaluate the determinant of a 2× 2
matrix as a sum of the determinants of 1× 1 matrices; the determinant of a 3× 3 matrix as a sum
of the determinants of 2 × 2 matrices, and so forth. To explain how we will take an n × n matrix
and distill from it an (n− 1)× (n− 1), we use the following notation.

Definition 8.12. Given an n×n matrix A where n > 1, the matrix Aij is the (n− 1)× (n− 1)
matrix formed by deleting the ith row of A and the jth column of A.

For example, using the matrix A below, we find the matrix A23 by deleting the second row and
third column of A.

A =

⎡
⎣ 3 1 2

0 −1 5
2 1 4

⎤
⎦ Delete R2 and C3−−−−−−−−−−−→ A23 =

[
3 1
2 1

]

We are now in the position to define the determinant of a matrix.

Definition 8.13. Given an n× n matrix A the determinant of A, denoted det(A), is defined
as follows

• If n = 1, then A = [a11] and det(A) = det ([a11]) = a11.

• If n > 1, then A = [aij ]n×n and

det(A) = det
(
[aij ]n×n

)
= a11 det (A11)− a12 det (A12) +− . . .+ (−1)1+na1n det (A1n)

There are two commonly used notations for the determinant of a matrix A: ‘det(A)’ and ‘|A|’
We have chosen to use the notation det(A) as opposed to |A| because we find that the latter is
often confused with absolute value, especially in the context of a 1 × 1 matrix. In the expansion
a11 det (A11)−a12 det (A12)+− . . .+(−1)1+na1n det (A1n), the notation ‘+− . . .+(−1)1+na1n’ means
that the signs alternate and the final sign is dictated by the sign of the quantity (−1)1+n. Since
the entries a11, a12 and so forth up through a1n comprise the first row of A, we say we are finding
the determinant of A by ‘expanding along the first row’. Later in the section, we will develop a
formula for det(A) which allows us to find it by expanding along any row.

Applying Definition 8.13 to the matrix A =

[
4 −3
2 1

]
we get

1We will talk more about the term ‘recursively’ in Section 9.1.
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8.5 Determinants and Cramer’s Rule 615

det(A) = det

([
4 −3
2 1

])

= 4det (A11)− (−3) det (A12)
= 4 det([1]) + 3 det([2])
= 4(1) + 3(2)
= 10

For a generic 2× 2 matrix A =

[
a b
c d

]
we get

det(A) = det

([
a b
c d

])

= a det (A11)− b det (A12)
= a det ([d])− b det ([c])
= ad− bc

This formula is worth remembering

Equation 8.1. For a 2× 2 matrix,

det

([
a b
c d

])
= ad− bc

Applying Definition 8.13 to the 3× 3 matrix A =

⎡
⎣ 3 1 2

0 −1 5
2 1 4

⎤
⎦ we obtain

det(A) = det

⎛
⎝
⎡
⎣ 3 1 2

0 −1 5
2 1 4

⎤
⎦
⎞
⎠

= 3det (A11)− 1 det (A12) + 2 det (A13)

= 3 det

([ −1 5
1 4

])
− det

([
0 5
2 4

])
+ 2det

([
0 −1
2 1

])

= 3((−1)(4)− (5)(1))− ((0)(4)− (5)(2)) + 2((0)(1)− (−1)(2))
= 3(−9)− (−10) + 2(2)
= −13

To evaluate the determinant of a 4 × 4 matrix, we would have to evaluate the determinants of
four 3 × 3 matrices, each of which involves the finding the determinants of three 2 × 2 matrices.
As you can see, our method of evaluating determinants quickly gets out of hand and many of you
may be reaching for the calculator. There is some mathematical machinery which can assist us in
calculating determinants and we present that here. Before we state the theorem, we need some
more terminology.
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616 Systems of Equations and Matrices

Definition 8.14. Let A be an n × n matrix and Aij be defined as in Definition 8.12. The ij
minor of A, denoted Mij is defined by Mij = det (Aij). The ij cofactor of A, denoted Cij is
defined by Cij = (−1)i+jMij = (−1)i+j det (Aij).

We note that in Definition 8.13, the sum

a11 det (A11)− a12 det (A12) +− . . .+ (−1)1+na1n det (A1n)

can be rewritten as

a11(−1)1+1 det (A11) + a12(−1)1+2 det (A12) + . . .+ a1n(−1)1+n det (A1n)

which, in the language of cofactors is

a11C11 + a12C12 + . . .+ a1nC1n

We are now ready to state our main theorem concerning determinants.

Theorem 8.7. Properties of the Determinant: Let A = [aij ]n×n.

• We may find the determinant by expanding along any row. That is, for any 1 ≤ k ≤ n,

det(A) = ak1Ck1 + ak2Ck2 + . . .+ aknCkn

• If A′ is the matrix obtained from A by:

– interchanging any two rows, then det(A′) = − det(A).

– replacing a row with a nonzero multiple (say c) of itself, then det(A′) = c det(A)

– replacing a row with itself plus a multiple of another row, then det(A′) = det(A)

• If A has two identical rows, or a row consisting of all 0’s, then det(A) = 0.

• If A is upper or lower triangular,a then det(A) is the product of the entries on the main
diagonal.b

• If B is an n× n matrix, then det(AB) = det(A) det(B).

• det (An) = det(A)n for all natural numbers n.

• A is invertible if and only if det(A) �= 0. In this case, det
(
A−1

)
=

1

det(A)
.

aSee Exercise 8.3.1 in 8.3.
bSee page 585 in Section 8.3.

Unfortunately, while we can easily demonstrate the results in Theorem 8.7, the proofs of most of
these properties are beyond the scope of this text. We could prove these properties for generic 2×2
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8.5 Determinants and Cramer’s Rule 617

or even 3×3 matrices by brute force computation, but this manner of proof belies the elegance and
symmetry of the determinant. We will prove what few properties we can after we have developed
some more tools such as the Principle of Mathematical Induction in Section 9.3.2 For the moment,
let us demonstrate some of the properties listed in Theorem 8.7 on the matrix A below. (Others
will be discussed in the Exercises.)

A =

⎡
⎣ 3 1 2

0 −1 5
2 1 4

⎤
⎦

We found det(A) = −13 by expanding along the first row. To take advantage of the 0 in the second
row, we use Theorem 8.7to find det(A) = −13 by expanding along that row.

det

⎛
⎝
⎡
⎣ 3 1 2

0 −1 5
2 1 4

⎤
⎦
⎞
⎠ = 0C21 + (−1)C22 + 5C23

= (−1)(−1)2+2 det (A22) + 5(−1)2+3 det (A23)

= − det

([
3 2
2 4

])
− 5 det

([
3 1
2 1

])

= −((3)(4)− (2)(2))− 5((3)(1)− (2)(1))
= −8− 5
= −13 �

In general, the sign of (−1)i+j in front of the minor in the expansion of the determinant follows
an alternating pattern. Below is the pattern for 2 × 2, 3 × 3 and 4 × 4 matrices, and it extends
naturally to higher dimensions.

[
+ −
− +

] ⎡
⎣ + − +
− + −
+ − +

⎤
⎦

⎡
⎢⎢⎣

+ − + −
− + − +
+ − + −
− + − +

⎤
⎥⎥⎦

The reader is cautioned, however, against reading too much into these sign patterns. In the example
above, we expanded the 3× 3 matrix A by its second row and the term which corresponds to the
second entry ended up being negative even though the sign attached to the minor is (+). These
signs represent only the signs of the (−1)i+j in the formula; the sign of the corresponding entry as
well as the minor itself determine the ultimate sign of the term in the expansion of the determinant.

To illustrate some of the other properties in Theorem 8.7, we use row operations to transform our
3× 3 matrix A into an upper triangular matrix, keeping track of the row operations, and labeling

2For a very elegant treatment, take a course in Linear Algebra. There, you will most likely see the treatment of
determinants logically reversed than what is presented here. Specifically, the determinant is defined as a function
which takes a square matrix to a real number and satisfies some of the properties in Theorem 8.7. From that function,
a formula for the determinant is developed.
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618 Systems of Equations and Matrices

each successive matrix.3

⎡
⎣ 3 1 2

0 −1 5
2 1 4

⎤
⎦ Replace R3−−−−−−−−−−→

with − 2
3
R1 +R3

⎡
⎣ 3 1 2

0 −1 5
0 1

3
8
3

⎤
⎦ Replace R3 with−−−−−−−−−−→

1
3
R2 +R3

⎡
⎣ 3 1 2

0 −1 5
0 0 13

3

⎤
⎦

A B C

Theorem 8.7 guarantees us that det(A) = det(B) = det(C) since we are replacing a row with
itself plus a multiple of another row moving from one matrix to the next. Furthermore, since
C is upper triangular, det(C) is the product of the entries on the main diagonal, in this case
det(C) = (3)(−1) (133 )

= −13. This demonstrates the utility of using row operations to assist in
calculating determinants. This also sheds some light on the connection between a determinant and
invertibility. Recall from Section 8.4 that in order to find A−1, we attempt to transform A to In
using row operations

[
A In

] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→ [
In A−1

]
As we apply our allowable row operations on A to put it into reduced row echelon form, the
determinant of the intermediate matrices can vary from the determinant of A by at most a nonzero
multiple. This means that if det(A) �= 0, then the determinant of A’s reduced row echelon form
must also be nonzero, which, according to Definition 8.4 means that all the main diagonal entries
on A’s reduced row echelon form must be 1. That is, A’s reduced row echelon form is In, and A is
invertible. Conversely, if A is invertible, then A can be transformed into In using row operations.
Since det (In) = 1 �= 0, our same logic implies det(A) �= 0. Basically, we have established that the
determinant determines whether or not the matrix A is invertible.4

It is worth noting that when we first introduced the notion of a matrix inverse, it was in the context
of solving a linear matrix equation. In effect, we were trying to ‘divide’ both sides of the matrix
equation AX = B by the matrix A. Just like we cannot divide a real number by 0, Theorem 8.7
tells us we cannot ‘divide’ by a matrix whose determinant is 0. We also know that if the coefficient
matrix of a system of linear equations is invertible, then system is consistent and independent. It
follows, then, that if the determinant of said coefficient is not zero, the system is consistent and
independent.

8.5.2 Cramer’s Rule and Matrix Adjoints

In this section, we introduce a theorem which enables us to solve a system of linear equations by
means of determinants only. As usual, the theorem is stated in full generality, using numbered
unknowns x1, x2, etc., instead of the more familiar letters x, y, z, etc. The proof of the general
case is best left to a course in Linear Algebra.

3Essentially, we follow the Gauss Jordan algorithm but we don’t care about getting leading 1’s.
4In Section 8.5.2, we learn determinants (specifically cofactors) are deeply connected with the inverse of a matrix.
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8.5 Determinants and Cramer’s Rule 619

Theorem 8.8. Cramer’s Rule: Suppose AX = B is the matrix form of a system of n linear
equations in n unknowns where A is the coefficient matrix, X is the unknowns matrix, and B is
the constant matrix. If det(A) �= 0, then the corresponding system is consistent and independent
and the solution for unknowns x1, x2, . . .xn is given by:

xj =
det (Aj)

det(A)
,

where Aj is the matrix A whose jth column has been replaced by the constants in B.

In words, Cramer’s Rule tells us we can solve for each unknown, one at a time, by finding the ratio
of the determinant of Aj to that of the determinant of the coefficient matrix. The matrix Aj is
found by replacing the column in the coefficient matrix which holds the coefficients of xj with the
constants of the system. The following example fleshes out this method.

Example 8.5.1. Use Cramer’s Rule to solve for the indicated unknowns.

1. Solve

{
2x1 − 3x2 = 4
5x1 + x2 = −2 for x1 and x2

2. Solve

⎧⎨
⎩

2x− 3y + z = −1
x− y + z = 1
3x− 4z = 0

for z.

Solution.

1. Writing this system in matrix form, we find

A =

[
2 −3
5 1

]
X =

[
x1

x2

]
B =

[
4

−2
]

To find the matrix A1, we remove the column of the coefficient matrix A which holds the
coefficients of x1 and replace it with the corresponding entries in B. Likewise, we replace the
column of A which corresponds to the coefficients of x2 with the constants to form the matrix
A2. This yields

A1 =

[
4 −3

−2 1

]
A2 =

[
2 4
5 −2

]

Computing determinants, we get det(A) = 17, det (A1) = −2 and det (A2) = −24, so that

x1 =
det (A1)

det(A)
= − 2

17
x2 =

det (A2)

det(A)
= −24

17

The reader can check that the solution to the system is
(− 2

17 ,−24
17

)
.
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620 Systems of Equations and Matrices

2. To use Cramer’s Rule to find z, we identify x3 as z. We have

A =

⎡
⎣ 2 −3 1

1 −1 1
3 0 −4

⎤
⎦ X =

⎡
⎣ x

y
z

⎤
⎦ B =

⎡
⎣ −1

1
0

⎤
⎦ A3 = Az =

⎡
⎣ 2 −3 −1

1 −1 1
3 0 0

⎤
⎦

Expanding both det(A) and det (Az) along the third rows (to take advantage of the 0’s) gives

z =
det (Az)

det(A)
=
−12
−10 =

6

5

The reader is encouraged to solve this system for x and y similarly and check the answer.

Our last application of determinants is to develop an alternative method for finding the inverse of
a matrix.5 Let us consider the 3× 3 matrix A which we so extensively studied in Section 8.5.1

A =

⎡
⎣ 3 1 2

0 −1 5
2 1 4

⎤
⎦

We found through a variety of methods that det(A) = −13. To our surprise and delight, its inverse
below has a remarkable number of 13’s in the denominators of its entries. This is no coincidence.

A−1 =

⎡
⎢⎣

9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

⎤
⎥⎦

Recall that to find A−1, we are essentially solving the matrix equation AX = I3, where X = [xij ]3×3
is a 3 × 3 matrix. Because of how matrix multiplication is defined, the first column of I3 is the
product of A with the first column of X, the second column of I3 is the product of A with the
second column of X and the third column of I3 is the product of A with the third column of X. In
other words, we are solving three equations6

A

⎡
⎣ x11

x21

x31

⎤
⎦ =

⎡
⎣ 1

0
0

⎤
⎦ A

⎡
⎣ x12

x22

x32

⎤
⎦ =

⎡
⎣ 0

1
0

⎤
⎦ A

⎡
⎣ x13

x23

x33

⎤
⎦ =

⎡
⎣ 0

0
1

⎤
⎦

We can solve each of these systems using Cramer’s Rule. Focusing on the first system, we have

A1 =

⎡
⎣ 1 1 2

0 −1 5
0 1 4

⎤
⎦ A2 =

⎡
⎣ 3 1 2

0 0 5
2 0 4

⎤
⎦ A3 =

⎡
⎣ 3 1 1

0 −1 0
2 1 0

⎤
⎦

5We are developing a method in the forthcoming discussion. As with the discussion in Section 8.4 when we
developed the first algorithm to find matrix inverses, we ask that you indulge us.

6The reader is encouraged to stop and think this through.
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8.5 Determinants and Cramer’s Rule 621

If we expand det (A1) along the first row, we get

det (A1) = det

([ −1 5
1 4

])
− det

([
0 5
0 4

])
+ 2det

([
0 −1
0 1

])

= det

([ −1 5
1 4

])

Amazingly, this is none other than the C11 cofactor of A. The reader is invited to check this, as
well as the claims that det (A2) = C12 and det (A3) = C13.

7 (To see this, though it seems unnatural
to do so, expand along the first row.) Cramer’s Rule tells us

x11 =
det (A1)

det(A)
=

C11

det(A)
, x21 =

det (A2)

det(A)
=

C12

det(A)
, x31 =

det (A3)

det(A)
=

C13

det(A)

So the first column of the inverse matrix X is:

⎡
⎣ x11

x21

x31

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C11

det(A)

C12

det(A)

C13

det(A)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

1

det(A)

⎡
⎣ C11

C12

C13

⎤
⎦

Notice the reversal of the subscripts going from the unknown to the corresponding cofactor of A.
This trend continues and we get⎡

⎣ x12

x22

x32

⎤
⎦ =

1

det(A)

⎡
⎣ C21

C22

C23

⎤
⎦

⎡
⎣ x13

x23

x33

⎤
⎦ =

1

det(A)

⎡
⎣ C31

C32

C33

⎤
⎦

Putting all of these together, we have obtained a new and surprising formula for A−1, namely

A−1 =
1

det(A)

⎡
⎣ C11 C21 C31

C12 C22 C32

C13 C23 C33

⎤
⎦

To see that this does indeed yield A−1, we find all of the cofactors of A

C11 = −9, C21 = −2, C31 = 7
C12 = 10, C22 = 8, C32 = −15
C13 = 2, C23 = −1, C33 = −3

And, as promised,

7In a solid Linear Algebra course you will learn that the properties in Theorem 8.7 hold equally well if the word
‘row’ is replaced by the word ‘column’. We’re not going to get into column operations in this text, but they do make
some of what we’re trying to say easier to follow.
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622 Systems of Equations and Matrices

A−1 =
1

det(A)

⎡
⎣ C11 C21 C31

C12 C22 C32

C13 C23 C33

⎤
⎦ = − 1

13

⎡
⎣ −9 −2 7

10 8 −15
2 −1 −3

⎤
⎦ =

⎡
⎢⎣

9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

⎤
⎥⎦

To generalize this to invertible n × n matrices, we need another definition and a theorem. Our
definition gives a special name to the cofactor matrix, and the theorem tells us how to use it along
with det(A) to find the inverse of a matrix.

Definition 8.15. Let A be an n×n matrix, and Cij denote the ij cofactor of A. The adjoint
of A, denoted adj(A) is the matrix whose ij-entry is the ji cofactor of A, Cji. That is

adj(A) =

⎡
⎢⎢⎢⎣

C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
C1n C2n . . . Cnn

⎤
⎥⎥⎥⎦

This new notation greatly shortens the statement of the formula for the inverse of a matrix.

Theorem 8.9. Let A be an invertible n× n matrix. Then

A−1 =
1

det(A)
adj(A)

For 2× 2 matrices, Theorem 8.9 reduces to a fairly simple formula.

Equation 8.2. For an invertible 2× 2 matrix,

[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]

The proof of Theorem 8.9 is, like so many of the results in this section, best left to a course in
Linear Algebra. In such a course, not only do you gain some more sophisticated proof techniques,
you also gain a larger perspective. The authors assure you that persistence pays off. If you stick
around a few semesters and take a course in Linear Algebra, you’ll see just how pretty all things
matrix really are - in spite of the tedious notation and sea of subscripts. Within the scope of this
text, we will prove a few results involving determinants in Section 9.3 once we have the Principle of
Mathematical Induction well in hand. Until then, make sure you have a handle on the mechanics
of matrices and the theory will come eventually.
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8.5 Determinants and Cramer’s Rule 623

8.5.3 Exercises

In Exercises 1 - 8, compute the determinant of the given matrix. (Some of these matrices appeared
in Exercises 1 - 8 in Section 8.4.)

1. B =

[
12 −7
−5 3

]
2. C =

[
6 15
14 35

]

3. Q =

[
x x2

1 2x

]
4. L =

⎡
⎢⎢⎣

1

x3
ln(x)

x3

− 3

x4
1− 3 ln(x)

x4

⎤
⎥⎥⎦

5. F =

⎡
⎣ 4 6 −3

3 4 −3
1 2 6

⎤
⎦ 6. G =

⎡
⎣ 1 2 3

2 3 11
3 4 19

⎤
⎦

7. V =

⎡
⎣ i j k
−1 0 5
9 −4 −2

⎤
⎦ 8. H =

⎡
⎢⎢⎣

1 0 −3 0
2 −2 8 7

−5 0 16 0
1 0 4 1

⎤
⎥⎥⎦

In Exercises 9 - 14, use Cramer’s Rule to solve the system of linear equations.

9.

{
3x+ 7y = 26

5x+ 12y = 39
10.

{
2x− 4y = 5

10x+ 13y = −6

11.

{
x+ y = 8000

0.03x+ 0.05y = 250
12.

{
1
2x− 1

5y = 1
6x+ 7y = 3

13.

⎧⎨
⎩

x+ y + z = 3
2x− y + z = 0

−3x+ 5y + 7z = 7
14.

⎧⎨
⎩

3x+ y − 2z = 10
4x− y + z = 5

x− 3y − 4z = −1

In Exercises 15 - 16, use Cramer’s Rule to solve for x4.

15.

⎧⎪⎪⎨
⎪⎪⎩

x1 − x3 = −2
2x2 − x4 = 0

x1 − 2x2 + x3 = 0
−x3 + x4 = 1

16.

⎧⎪⎪⎨
⎪⎪⎩

4x1 + x2 = 4
x2 − 3x3 = 1

10x1 + x3 + x4 = 0
−x2 + x3 = −3
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624 Systems of Equations and Matrices

In Exercises 17 - 18, find the inverse of the given matrix using their determinants and adjoints.

17. B =

[
12 −7
−5 3

]
18. F =

⎡
⎣ 4 6 −3

3 4 −3
1 2 6

⎤
⎦

19. Carl’s Sasquatch Attack! Game Card Collection is a mixture of common and rare cards.
Each common card is worth $0.25 while each rare card is worth $0.75. If his entire 117 card
collection is worth $48.75, how many of each kind of card does he own?

20. How much of a 5 gallon 40% salt solution should be replaced with pure water to obtain 5
gallons of a 15% solution?

21. How much of a 10 liter 30% acid solution must be replaced with pure acid to obtain 10 liters
of a 50% solution?

22. Daniel’s Exotic Animal Rescue houses snakes, tarantulas and scorpions. When asked how
many animals of each kind he boards, Daniel answered: ‘We board 49 total animals, and I
am responsible for each of their 272 legs and 28 tails.’ How many of each animal does the
Rescue board? (Recall: tarantulas have 8 legs and no tails, scorpions have 8 legs and one
tail, and snakes have no legs and one tail.)

23. This exercise is a continuation of Exercise 16 in Section 8.4. Just because a system is consistent
independent doesn’t mean it will admit a solution that makes sense in an applied setting.
Using the nutrient values given for Ippizuti Fish, Misty Mushrooms, and Sun Berries, use
Cramer’s Rule to determine the number of servings of Ippizuti Fish needed to meet the needs
of a daily diet which requires 2500 calories, 1000 grams of protein, and 400 milligrams of
Vitamin X. Now use Cramer’s Rule to find the number of servings of Misty Mushrooms
required. Does a solution to this diet problem exist?

24. Let R =

[ −7 3
11 2

]
, S =

[
1 −5
6 9

]
T =

[
11 2
−7 3

]
, and U =

[ −3 15
6 9

]

(a) Show that det(RS) = det(R) det(S)

(b) Show that det(T ) = − det(R)

(c) Show that det(U) = −3 det(S)

25. For M , N , and P below, show that det(M) = 0, det(N) = 0 and det(P ) = 0.

M =

⎡
⎣ 1 2 3

0 0 0
7 8 9

⎤
⎦ , N =

⎡
⎣ 1 2 3

1 2 3
4 5 6

⎤
⎦ , P =

⎡
⎣ 1 2 3
−2 −4 −6
7 8 9

⎤
⎦
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26. Let A be an arbitrary invertible 3× 3 matrix.

(a) Show that det(I3) = 1.8

(b) Using the facts that AA−1 = I3 and det(AA−1) = det(A) det(A−1), show that

det(A−1) =
1

det(A)

The purpose of Exercises 27 - 30 is to introduce you to the eigenvalues and eigenvectors of a matrix.9

We begin with an example using a 2× 2 matrix and then guide you through some exercises using
a 3× 3 matrix. Consider the matrix

C =

[
6 15
14 35

]

from Exercise 2. We know that det(C) = 0 which means that CX = 02×2 does not have a unique
solution. So there is a nonzero matrix Y with CY = 02×2. In fact, every matrix of the form

Y =

[
−5

2 t

t

]

is a solution to CX = 02×2, so there are infinitely many matrices such that CX = 02×2. But
consider the matrix

X41 =

[
3
7

]

It is NOT a solution to CX = 02×2, but rather,

CX41 =

[
6 15
14 35

] [
3
7

]
=

[
123
287

]
= 41

[
3
7

]

In fact, if Z is of the form

Z =

[
3
7 t

t

]

then

CZ =

[
6 15
14 35

] [
3
7 t

t

]
=

[
123
7 t

41t

]
= 41

[
3
7 t

t

]
= 41Z

for all t. The big question is “How did we know to use 41?”

We need a number λ such that CX = λX has nonzero solutions. We have demonstrated that λ = 0
and λ = 41 both worked. Are there others? If we look at the matrix equation more closely, what

8If you think about it for just a moment, you’ll see that det(In) = 1 for any natural number n. The formal proof
of this fact requires the Principle of Mathematical Induction (Section 9.3) so we’ll stick with n = 3 for the time being.

9This material is usually given its own chapter in a Linear Algebra book so clearly we’re not able to tell you
everything you need to know about eigenvalues and eigenvectors. They are a nice application of determinants,
though, so we’re going to give you enough background so that you can start playing around with them.
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we really wanted was a nonzero solution to (C − λI2)X = 02×2 which we know exists if and only if
the determinant of C − λI2 is zero.10 So we computed

det(C − λI2) = det

([
6− λ 15

14 35− λ

])
= (6− λ)(35− λ)− 14 · 15 = λ2 − 41λ

This is called the characteristic polynomial of the matrix C and it has two zeros: λ = 0 and
λ = 41. That’s how we knew to use 41 in our work above. The fact that λ = 0 showed up as one
of the zeros of the characteristic polynomial just means that C itself had determinant zero which
we already knew. Those two numbers are called the eigenvalues of C. The corresponding matrix
solutions to CX = λX are called the eigenvectors of C and the ‘vector’ portion of the name will
make more sense after you’ve studied vectors.

Now it’s your turn. In the following exercises, you’ll be using the matrix G from Exercise 6.

G =

⎡
⎣ 1 2 3

2 3 11
3 4 19

⎤
⎦

27. Show that the characteristic polynomial of G is p(λ) = −λ(λ− 1)(λ− 22). That is, compute
det (G− λI3).

28. Let G0 = G. Find the parametric description of the solution to the system of linear equations
given by GX = 03×3.

29. Let G1 = G − I3. Find the parametric description of the solution to the system of linear
equations given by G1X = 03×3. Show that any solution to G1X = 03×3 also has the property
that GX = 1X.

30. Let G22 = G − 22I3. Find the parametric description of the solution to the system of linear
equations given by G22X = 03×3. Show that any solution to G22X = 03×3 also has the
property that GX = 22X.

10Think about this.
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8.5.4 Answers

1. det(B) = 1 2. det(C) = 0

3. det(Q) = x2 4. det(L) =
1

x7

5. det(F ) = −12 6. det(G) = 0

7. det(V ) = 20i+ 43j + 4k 8. det(H) = −2

9. x = 39, y = −13 10. x = 41
66 , y = −31

33

11. x = 7500, y = 500 12. x = 76
47 , y = −45

47

13. x = 1, y = 2, z = 0 14. x = 121
60 , y = 131

60 , z = −53
60

15. x4 = 4 16. x4 = −1

17. B−1 =
[
3 7
5 12

]

18. F−1 =

⎡
⎢⎣
−5

2
7
2

1
2

7
4 −9

4 −1
4

−1
6

1
6

1
6

⎤
⎥⎦

19. Carl owns 78 common cards and 39 rare cards.

20. 3.125 gallons.

21. 20
7 ≈ 2.85 liters.

22. The rescue houses 15 snakes, 21 tarantulas and 13 scorpions.

23. Using Cramer’s Rule, we find we need 53 servings of Ippizuti Fish to satisfy the dietary
requirements. The number of servings of Misty Mushrooms required, however, is −1120.
Since it’s impossible to have a negative number of servings, there is no solution to the applied
problem, despite there being a solution to the mathematical problem. A cautionary tale
about using Cramer’s Rule: just because you are guaranteed a mathematical answer for each
variable doesn’t mean the solution will make sense in the ‘real’ world.
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