CHAPTER 8

SYSTEMS OF EQUATIONS AND MATRICES

8.1 SYSTEMS OF LINEAR EQUATIONS: (GAUSSIAN ELIMINATION

Up until now, when we concerned ourselves with solving different types of equations there was only
one equation to solve at a time. Given an equation f(z) = g(z), we could check our solutions
geometrically by finding where the graphs of y = f(x) and y = g(x) intersect. The z-coordinates
of these intersection points correspond to the solutions to the equation f(x) = g(x), and the y-
coordinates were largely ignored. If we modify the problem and ask for the intersection points of
the graphs of y = f(z) and y = g(z), where both the solution to z and y are of interest, we have
what is known as a system of equations, usually written as

{vz2 18

The ‘curly bracket’ notation means we are to find all pairs of points (z,y) which satisfy both
equations. We begin our study of systems of equations by reviewing some basic notions from
Intermediate Algebra.

Definition 8.1. A linear equation in two variables is an equation of the form a,x+ a.y = ¢
where a,, a, and c are real numbers and at least one of a, and a, is nonzero.

For reasons which will become clear later in the section, we are using subscripts in Definition 8.1
to indicate different, but fixed, real numbers and those subscripts have no mathematical meaning
beyond that. For example, 3z — 5 = 0.1 is a linear equation in two variables with a, = 3, a, = —%
and ¢ = 0.1. We can also consider z = 5 to be a linear equation in two variables' by identifying
a, =1, a, = 0, and ¢ = 5. If a; and a, are both 0, then depending on ¢, we get either an
equation which is always true, called an identity, or an equation which is never true, called a
contradiction. (If ¢ = 0, then we get 0 = 0, which is always true. If ¢ # 0, then we’d have
0 # 0, which is never true.) Even though identities and contradictions have a large role to play

!Critics may argue that z = 5 is clearly an equation in one variable. It can also be considered an equation in 117
variables with the coefficients of 116 variables set to 0. As with many conventions in Mathematics, the context will
clarify the situation.
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in the upcoming sections, we do not consider them linear equations. The key to identifying linear
equations is to note that the variables involved are to the first power and that the coefficients of the
variables are numbers. Some examples of equations which are non-linear are 22 +y = 1, zy = 5 and
e?® +In(y) = 1. We leave it to the reader to explain why these do not satisfy Definition 8.1. From
what we know from Sections 1.2 and 2.1, the graphs of linear equations are lines. If we couple two
or more linear equations together, in effect to find the points of intersection of two or more lines,
we obtain a system of linear equations in two variables. Our first example reviews some of
the basic techniques first learned in Intermediate Algebra.

Example 8.1.1. Solve the following systems of equations. Check your answer algebraically and
graphically.

oy = 49 7 _
1 J2e-y =1 5 g = I s [6r+3y = 9
y = 3 R N | dr +2y = 12

9 T3 2
rT—y = 0
9 3r+4y = -2 4 20 —4y = 6 6. r+y = 2
| Bz—-y = 5 "l 3x—-6y = 9 24y = -2
Solution.

1. Our first system is nearly solved for us. The second equation tells us that y = 3. To find the
corresponding value of z, we substitute this value for y into the the first equation to obtain
2z — 3 =1, so that = 2. Our solution to the system is (2,3). To check this algebraically,
we substitute x = 2 and y = 3 into each equation and see that they are satisfied. We see
2(2) =3 =1, and 3 = 3, as required. To check our answer graphically, we graph the lines
2x —y =1 and y = 3 and verify that they intersect at (2, 3).

2. To solve the second system, we use the addition method to eliminate the variable x. We
take the two equations as given and ‘add equals to equals’ to obtain

3r+4y = -2
+ (-3z—y = 5
Jy = 3

This gives us y = 1. We now substitute y = 1 into either of the two equations, say —3z—y = 5,
to get —3z — 1 =5 so that z = —2. Our solution is (—2,1). Substituting z = —2 and y = 1
into the first equation gives 3(—2) + 4(1) = —2, which is true, and, likewise, when we check
(—2,1) in the second equation, we get —3(—2) — 1 = 5, which is also true. Geometrically, the
lines 3x + 4y = —2 and —3xz — y = 5 intersect at (—2,1).
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20 —y =1
y=

3. The equations in the third system are more approachable if we clear denominators. We
multiply both sides of the first equation by 15 and both sides of the second equation by 18
to obtain the kinder, gentler system

5z — 12y 21
dr+6y = 9

Adding these two equations directly fails to eliminate either of the variables, but we note
that if we multiply the first equation by 4 and the second by —5, we will be in a position to
eliminate the = term

20x — 48y = 84

+ (—20z—30y = —45)

—T8y = 39
From this we get y = —%. We can temporarily avoid too much unpleasantness by choosing to
substitute y = —% into one of the equivalent equations we found by clearing denominators,

say into bz — 12y = 21. We get bx + 6 = 21 which gives x = 3. Our answer is (3,—%).
At this point, we have no choice — in order to check an answer algebraically, we must see

if the answer satisfies both of the original equations, so we substitute x = 3 and y = —%
into both § — %y = % and %x + % = % We leave it to the reader to verify that the solution

is correct. Graphing both of the lines involved with considerable care yields an intersection
point of (3, —%)

4. An eerie calm settles over us as we cautiously approach our fourth system. Do its friendly
integer coefficients belie something more sinister? We note that if we multiply both sides of
the first equation by 3 and the both sides of the second equation by —2, we are ready to
eliminate the x
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6 — 12y = 18
+ (—6x+12y = -18)
0 = 0

We eliminated not only the z, but the y as well and we are left with the identity 0 = 0. This
means that these two different linear equations are, in fact, equivalent. In other words, if an
ordered pair (x,y) satisfies the equation 2x — 4y = 6, it automatically satisfies the equation
3z — 6y = 9. One way to describe the solution set to this system is to use the roster method?
and write {(x,y) |2z — 4y = 6}. While this is correct (and corresponds exactly to what’s
happening graphically, as we shall see shortly), we take this opportunity to introduce the
notion of a parametric solution to a system. Our first step is to solve 2z — 4y = 6
for one of the variables, say y = %x — % For each value of z, the formula y = %x — %
determines the corresponding y-value of a solution. Since we have no restriction on z, it is
called a free variable. We let x = ¢, a so-called ‘parameter’, and get y = %t — % Our
set of solutions can then be described as {(t, %t - %) | —co<t< oo}.3 For specific values
of t, we can generate solutions. For example, t = 0 gives us the solution (0, —%); t =117
gives us (117,57), and while we can readily check each of these particular solutions satisfy
both equations, the question is how do we check our general answer algebraically? Same as
always. We claim that for any real number ¢, the pair (t, %t — %) satisfies both equations.
Substituting x =t and y = %t — % into 2z — 4y = 6 gives 2t — 4 (%t — %) = 6. Simplifying,
we get 2t — 2t + 6 = 6, which is always true. Similarly, when we make these substitutions in
the equation 3z — 6y = 9, we get 3t — 6 (%t — %) = 9 which reduces to 3t — 3t +9 =9, so it
checks out, too. Geometrically, 22 — 4y = 6 and 3x — 6y = 9 are the same line, which means
that they intersect at every point on their graphs. The reader is encouraged to think about

how our parametric solution says exactly that.

-$=1 2 — 4y = 6
2¢ Ly 1 3z — 6y =9
3 = 2 .
(Same line.)

2See Section 1.2 for a review of this.

3Note that we could have just as easily chosen to solve 2z — 4y = 6 for = to obtain z = 2y + 3. Letting y be the
parameter ¢, we have that for any value of ¢, z = 2t + 3, which gives {(2t + 3,t)| — oo < ¢t < co}. There is no one
correct way to parameterize the solution set, which is why it is always best to check your answer.
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5. Multiplying both sides of the first equation by 2 and the both sides of the second equation
by —3, we set the stage to eliminate z

12z + 6y = 18
+ (=122 -6y = -36)
0 = -18

As in the previous example, both z and y dropped out of the equation, but we are left with
an irrevocable contradiction, 0 = —18. This tells us that it is impossible to find a pair (z,y)
which satisfies both equations; in other words, the system has no solution. Graphically, the
lines 62 + 3y = 9 and 4z + 2y = 12 are distinct and parallel, so they do not intersect.

6. We can begin to solve our last system by adding the first two equations

z—y = 0
+ (r+y = 2)
20 = 2

which gives = 1. Substituting this into the first equation gives 1 —y = 0 so that y = 1.
We seem to have determined a solution to our system, (1,1). While this checks in the
first two equations, when we substitute * = 1 and y = 1 into the third equation, we get
—2(1)+(1) = —2 which simplifies to the contradiction —1 = —2. Graphing the lines z—y = 0,
x+y =2, and —2z +y = —2, we see that the first two lines do, in fact, intersect at (1, 1),
however, all three lines never intersect at the same point simultaneously, which is what is
required if a solution to the system is to be found.

=N WA O
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6z +3y =9
dx + 2y = 12 y—xz=0
y+x=2
—2rx+y=-2

0

A few remarks about Example 8.1.1 are in order. It is clear that some systems of equations have
solutions, and some do not. Those which have solutions are called consistent, those with no
solution are called inconsistent. We also distinguish the two different types of behavior among
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consistent systems. Those which admit free variables are called dependent; those with no free
variables are called independent.* Using this new vocabulary, we classify numbers 1, 2 and 3 in
Example 8.1.1 as consistent independent systems, number 4 is consistent dependent, and numbers
5 and 6 are inconsistent.” The system in 6 above is called overdetermined, since we have more
equations than variables.® Not surprisingly, a system with more variables than equations is called

underdetermined. While the system in number 6 above is overdetermined and inconsistent,
there exist overdetermined consistent systems (both dependent and independent) and we leave it
to the reader to think about what is happening algebraically and geometrically in these cases.
Likewise, there are both consistent and inconsistent underdetermined systems,” but a consistent
underdetermined system of linear equations is necessarily dependent.®

In order to move this section beyond a review of Intermediate Algebra, we now define what is meant
by a linear equation in n variables.

Definition 8.2. A linear equation in n variables, z,, z,, ..., T, is an equation of the form
1T, + axxy + . .. + apw, = ¢ where a,, a,, ...a, and c are real numbers and at least one of a,,
Ay, - .., Ay 1S NONZETO.

Instead of using more familiar variables like z, y, and even z and/or w in Definition 8.2, we use
subscripts to distinguish the different variables. We have no idea how many variables may be
involved, so we use numbers to distinguish them instead of letters. (There is an endless supply of
distinct numbers.) As an example, the linear equation 3z, —x, = 4 represents the same relationship
between the variables x; and z, as the equation 3z — y = 4 does between the variables z and y.
In addition, just as we cannot combine the terms in the expression 3x — y, we cannot combine the
terms in the expression 3z, — x,. Coupling more than one linear equation in n variables results
in a system of linear equations in n variables. When solving these systems, it becomes
increasingly important to keep track of what operations are performed to which equations and to
develop a strategy based on the kind of manipulations we’ve already employed. To this end, we
first remind ourselves of the maneuvers which can be applied to a system of linear equations that
result in an equivalent system.”

In the case of systems of linear equations, regardless of the number of equations or variables, consistent inde-
pendent systems have exactly one solution. The reader is encouraged to think about why this is the case for linear
equations in two variables. Hint: think geometrically.

5The adjectives ‘dependent’ and ‘independent’ apply only to consistent systems — they describe the type of solu-
tions. Is there a free variable (dependent) or not (independent)?

51f we think if each variable being an unknown quantity, then ostensibly, to recover two unknown quantities,
we need two pieces of information - i.e., two equations. Having more than two equations suggests we have more
information than necessary to determine the values of the unknowns. While this is not necessarily the case, it does
explain the choice of terminology ‘overdetermined’.

"We need more than two variables to give an example of the latter.

8 Again, experience with systems with more variables helps to see this here, as does a solid course in Linear Algebra.

9That is, a system with the same solution set.
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Theorem 8.1. Given a system of equations, the following moves will result in an equivalent
system of equations.

e Interchange the position of any two equations.
e Replace an equation with a nonzero multiple of itself.*

e Replace an equation with itself plus a nonzero multiple of another equation.

“That is, an equation which results from multiplying both sides of the equation by the same nonzero number.

We have seen plenty of instances of the second and third moves in Theorem 8.1 when we solved
the systems Example 8.1.1. The first move, while it obviously admits an equivalent system, seems
silly. Our perception will change as we consider more equations and more variables in this, and
later sections.

Consider the system of equations

T — %y + %z = 1
— %z = 4
z = —
Clearly z = —1, and we substitute this into the second equation y — %(—1) = 4 to obtain y = %
Finally, we substitute y = % and z = —1 into the first equation to get x — % (%) + %(—1) =1,

so that z = %. The reader can verify that these values of x, y and z satisfy all three original

equations. It is tempting for us to write the solution to this system by extending the usual (z,y)
notation to (z,y,z) and list our solution as (%, %, —1). The question quickly becomes what does
an ‘ordered triple’ like (%, %, —1) represent? Just as ordered pairs are used to locate points on the
two-dimensional plane, ordered triples can be used to locate points in space.'’ Moreover, just as
equations involving the variables x and y describe graphs of one-dimensional lines and curves in the
two-dimensional plane, equations involving variables x, y, and z describe objects called surfaces
in three-dimensional space. Each of the equations in the above system can be visualized as a plane
situated in three-space. Geometrically, the system is trying to find the intersection, or common
point, of all three planes. If you imagine three sheets of notebook paper each representing a portion
of these planes, you will start to see the complexities involved in how three such planes can intersect.
Below is a sketch of the three planes. It turns out that any two of these planes intersect in a line,'!
so our intersection point is where all three of these lines meet.

10¥ou were asked to think about this in Exercise 40 in Section 1.1.
H1n fact, these lines are described by the parametric solutions to the systems formed by taking any two of these
equations by themselves.
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Since the geometry for equations involving more than two variables is complicated, we will focus
our efforts on the algebra. Returning to the system

1

1 _
_EZ = 4

z = -1

we note the reason it was so easy to solve is that the third equation is solved for z, the second
equation involves only y and z, and since the coefficient of y is 1, it makes it easy to solve for y
using our known value for z. Lastly, the coefficient of x in the first equation is 1 making it easy to
substitute the known values of y and z and then solve for x. We formalize this pattern below for
the most general systems of linear equations. Again, we use subscripted variables to describe the
general case. The variable with the smallest subscript in a given equation is typically called the
leading variable of that equation.

Definition 8.3. A system of linear equations with variables x,, x,, ...x, is said to be in
triangular form provided all of the following conditions hold:

1. The subscripts of the variables in each equation are always increasing from left to right.
2. The leading variable in each equation has coefficient 1.

3. The subscript on the leading variable in a given equation is greater than the subscript on
the leading variable in the equation above it.

4. Any equation without variables® cannot be placed above an equation with variables.

“necessarily an identity or contradiction
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In our previous system, if we make the obvious choices © = x,, y = z,, and z = x5, we see that the
system is in triangular form.'”> An example of a more complicated system in triangular form is

r, —4drs+x,—x = 6
To+2xs = 1

Ti+ 3T —xs = 8

s +9xs = 10

Our goal henceforth will be to transform a given system of linear equations into triangular form
using the moves in Theorem 8.1.

Example 8.1.2. Use Theorem 8.1 to put the following systems into triangular form and then solve
the system if possible. Classify each system as consistent independent, consistent dependent, or
inconsistent.

3r—y+z = 3 20 +3y—2z = 1 3z, +x,+x, = 6
1. 20 —4y+3z = 16 2. 10r—2 = 2 3. 20, + 1y —x3 = 4
r—y+z = D dr—9y+2z = 5 To—3x3 —2x, = 0

Solution.

1. For definitiveness, we label the topmost equation in the system F1, the equation beneath that
E2; and so forth. We now attempt to put the system in triangular form using an algorithm
known as Gaussian Elimination. What this means is that, starting with z, we transform
the system so that conditions 2 and 3 in Definition 8.3 are satisfied. Then we move on to
the next variable, in this case y, and repeat. Since the variables in all of the equations have
a consistent ordering from left to right, our first move is to get an x in E1’s spot with a
coefficient of 1. While there are many ways to do this, the easiest is to apply the first move
listed in Theorem 8.1 and interchange F1 and E'3.

(F1) 3z—y+z = Switel B and (E1) r—y+z = 5
(B2) 2z —4y+3z = 16 wichblandPs (F2) 22—4y+3z = 16
(E3) r—y+z = b (E3) 3z—-y+z = 3

To satisfy Definition 8.3, we need to eliminate the 2’s from F2 and E3. We accomplish this
by replacing each of them with a sum of themselves and a multiple of E1. To eliminate the
x from E2, we need to multiply E'1 by —2 then add; to eliminate the = from E3, we need to
multiply £1 by —3 then add. Applying the third move listed in Theorem 8.1 twice, we get

(E1) Toytz = 5 Replace E2 with —2E1 + E2 (Bl) z-y+z = o
E2) 2z —4y+3z = 16 e E2) -2 = 6
( ) . Yoz Replace E3 with —3FE1 + E3 ( ) ytz

(E3) 3x—y+z = 3 (E3) 2y—2z = —12

121f Jetters are used instead of subscripted variables, Definition 8.3 can be suitably modified using alphabetical
order of the variables instead of numerical order on the subscripts of the variables.
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Now we enforce the conditions stated in Definition 8.3 for the variable y. To that end we
need to get the coefficient of y in E2 equal to 1. We apply the second move listed in Theorem

8.1 and replace E2 with itself times —%.

Eg;; z _2y 1 z = 2 Replace E2 with —%E2 Eg;; =Yy +1Z - g
— y z = p— 52 — J—
(E3) 2y—2z = —12 (E3) 2y—2z = —12
To eliminate the y in E3, we add —2F2 to it.
(Fl) z—y+2z = 5 . (El) z—y+2z = 5
(EQ) _ %Z _ _3 Replace E3 with —2FE2 + E3 (E2) - %Z _ _3
(E3) 2y—2z = —12 (E3) —z = —6

Finally, we apply the second move from Theorem 8.1 one last time and multiply £3 by —1
to satisfy the conditions of Definition 8.3 for the variable z.

(El) z—y+z = 5 Reolace B3 with — 153 (El) z—y+2z = 5
(E2) ~1y = 3 == (E2) -1z = -3
(E3) —z = —6 (E3) z = 6

Now we proceed to substitute. Plugging in z = 6 into F2 gives y — 3 = —3 so that y = 0.
With y = 0 and z = 6, E1 becomes x — 0+ 6 = 5, or x = —1. Our solution is (—1,0,6).
We leave it to the reader to check that substituting the respective values for z, y, and z into
the original system results in three identities. Since we have found a solution, the system is
consistent; since there are no free variables, it is independent.

. Proceeding as we did in 1, our first step is to get an equation with = in the E1 position with

1 as its coefficient. Since there is no easy fix, we multiply E1 by %

_ 3, 1 - 1
Eg;; 2z +1§y —F = ) Replace E1 with 1 E1 Eg;; T+ 210 2% = %
r—2z = r—z =
(E3) 4r—-9y+2z = 5 (E3) 4z —-9y+2z = 5
Now it’s time to take care of the 2’s in E2 and E3.

(BEl) z+3y—1iz = 3 . (El) z+3y—32 = 3
(E2) 0z —» — 9 Replace E2 w1.th —10E1 + E2 (E2) 15y 44 — -3
(E3) Ay — gy +9: = 5§ Replace E3 with —4FE1 + E3 (ES) _15y + 4y = 3
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Our next step is to get the coefficient of y in E2 equal to 1. To that end, we have

3 1, _ 1 3 1, _ 1
(E1) =+ Y% T 2 Replace B2 with —-- F2 (E1) @+ W% T3
(E2) —15y+4z = -3 19 (E2) y— iz L
(E3) —1lby+4z = 3 (E3) —15y+42 = 3

Finally, we rid E3 of y.
(E1) x+% N %Z - % Replace E3 with 1562 + E3 () w—ytz = 5
(EQ) y— %Z _ % eplace wit + (EZ) -1 = -3
(E3) —1by+4z = 3 (E3) 0 = 6

The last equation, 0 = 6, is a contradiction so the system has no solution. According to
Theorem 8.1, since this system has no solutions, neither does the original, thus we have an
inconsistent system.

3. For our last system, we begin by multiplying £1 by % to get a coefficient of 1 on z;.

(E1) 3z, 4+ +ay

1 1 _
Replace E1 with 3 E1 (E1) @+ 32, + g2, = 2
(E2) 224+ x,—23 = 4 (E2) 22+ x,—23 = 4
(E?)) Ty — 3563 - 2.'];4 - 0 (E?)) Ty — 31/13 - 2(1:4 - O

Next we eliminate x;, from E2

(E1) =z, + %xz + %a:4 = 2 (E1) z,+ %332 + %m = 2
Replace F2
(E3) Ty — 3.%'3 - 2-:U4 - (E3) Ty — 3.1‘3 - 2164 - 0
We switch £2 and E3 to get a coefficient of 1 for x,.
(El) "Bl + %SL‘Q + %1’4 == 2 (El) ‘/Bl + %$2 + %15‘4 =
Switch £2 and E3
(B2) iz, —ay— 32z, = 0 (E2) @, —3z5— 21, =
(E3) 2,—3x3—2x, = 0 (E3) tw,—my— 2z, =

Finally, we eliminate x, in E3.
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(B1) a4z, + 1o, = 2 (B1) o+ les+le, =
(EQ) To—3r3 —2x, = 0 Replace E3
with —1E2 + E3

Equation E3 reduces to 0 = 0,which is always true. Since we have no equations with x4
or x4 as leading variables, they are both free, which means we have a consistent dependent
system. We parametrize the solution set by letting z; = s and z, = ¢t and obtain from E£2
that @, = 3s 4 2. Substituting this and z, = ¢ into E1, we have z, + § (35 +2t) + 3t = 2
which gives 2, = 2 — s —t. Our solution is the set {(2—s—t,25+3t,s,t)| —00 < s5,t < c0}.!3
We leave it to the reader to verify that the substitutions 1 =2 —s—1t, o = 3s+2t, 13 = s
and x4 = t satisfy the equations in the original system. O

Like all algorithms, Gaussian Elimination has the advantage of always producing what we need,
but it can also be inefficient at times. For example, when solving 2 above, it is clear after we
eliminated the x’s in the second step to get the system

(Bl) z+3y—32 = 1
(E2) —15y+4z = -3
(E3) —15y+4z = 3

that equations £2 and £E3 when taken together form a contradiction since we have identical left hand
sides and different right hand sides. The algorithm takes two more steps to reach this contradiction.
We also note that substitution in Gaussian Elimination is delayed until all the elimination is done,
thus it gets called back-substitution. This may also be inefficient in many cases. Rest assured,
the technique of substitution as you may have learned it in Intermediate Algebra will once again
take center stage in Section 8.7. Lastly, we note that the system in 3 above is underdetermined,
and as it is consistent, we have free variables in our answer. We close this section with a standard
‘mixture’ type application of systems of linear equations.

Example 8.1.3. Lucas needs to create a 500 milliliters (mL) of a 40% acid solution. He has stock
solutions of 30% and 90% acid as well as all of the distilled water he wants. Set-up and solve a
system of linear equations which determines all of the possible combinations of the stock solutions
and water which would produce the required solution.

Solution. We are after three unknowns, the amount (in mL) of the 30% stock solution (which
we'll call x), the amount (in mL) of the 90% stock solution (which we’ll call y) and the amount
(in mL) of water (which we’ll call w). We now need to determine some relationships between these
variables. Our goal is to produce 500 milliliters of a 40% acid solution. This product has two
defining characteristics. First, it must be 500 mL; second, it must be 40% acid. We take each

3Here, any choice of s and ¢ will determine a solution which is a point in 4-dimensional space. Yeah, we have
trouble visualizing that, too.
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of these qualities in turn. First, the total volume of 500 mL must be the sum of the contributed
volumes of the two stock solutions and the water. That is

amount of 30% stock solution + amount of 90% stock solution 4+ amount of water = 500 mL

Using our defined variables, this reduces to x + y + w = 500. Next, we need to make sure the final
solution is 40% acid. Since water contains no acid, the acid will come from the stock solutions only.
We find 40% of 500 mL to be 200 mL which means the final solution must contain 200 mL of acid.
We have

amount of acid in 30% stock solution + amount of acid 90% stock solution = 200 mL

The amount of acid in  mL of 30% stock is 0.30x and the amount of acid in y mL of 90% solution
is 0.90y. We have 0.30z +0.90y = 200. Converting to fractions,'* our system of equations becomes

r+y+w = 500
Zr+ 5y = 200

We first eliminate the x from the second equation

(E1) z+y+w = 500  Replace E2 with —{5E1+ E2 (E1) :U—|—y+w = 500
(B2) $z+4 15y = 200 ' 50

—
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Next, we get a coefficient of 1 on the leading variable in £2

{(El) r+y+w = 500 Replace £2 with 3 F2 {(El) r+y+w = 500

(B2) 3y—3w = 50 (E2) —tw = 20

Notice that we have no equation to determine w, and as such, w is free. We set w = ¢ and from FE2
get y = 1t + 250 . Substituting into E'1 gives z + (%t + %) +t =500 so that x = —%t + @. This
system is consastent, dependent and its solution set is {(—%t + 12350, %t + 250 ) | — o0 <t < oo}
While this answer checks algebraically, we have neglected to take into account that =, y and w,
being amounts of acid and water, need to be nonnegative. That is, z > 0 y > 0and w > 0. The
constraint x > 0 gives us —3 1250 >0,ort < 2500 . From y > 0, we get 5 1420 250 >0ort>— 500

The condition z > 0 yields t > O and we see that when we take the set theoretlc intersection of
these intervals, we get 0 <t < 259&. Our final answer is {( 3t + 12350, %t + 250 ) |0 <t< @}.
Of what practical use is our answer? Suppose there is only 100 mL of the 90% solution remaining
and it is due to expire. Can we use all of it to make our required solution? We would have y = 100

so that %t + 250 — 100, and we get t = %. This means the amount of 30% solution required is

T = —%t—i— % = —% (lg—o) + 123& = % mL, and for the water, w =t = % mL. The reader is
invited to check that mixing these three amounts of our constituent solutions produces the required
40% acid mix. O

14We do this only because we believe students can use all of the practice with fractions they can get!
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8.1.1 EXERCISES

SYSTEMS OF EQUATIONS AND MATRICES

(Review Exercises) In Exercises 1 - 8, take a trip down memory lane and solve the given system
using substitution and/or elimination. Classify each system as consistent independent, consistent
dependent, or inconsistent. Check your answers both algebraically and graphically.

1.{33+2y = 5

z = 6
2
:E«Z Yy — _5
3. 3oy )
5 =
1 1
sr—3y = —1
5. 2 3
20—3z = 6

' 1
=T _y

oles W5

20 —3r = 1
2.
{ y = 3

L sesy =3
lartiy =1

z+4y = 6
6. 1 1 _ 1
2T T3y = 3

. T3y =
’ 10 20 10

|
W~

In Exercises 9 - 26, put each system of linear equations into triangular form and solve the system
if possible. Classify each system as consistent independent, consistent dependent, or inconsistent.

0 { —Sr+y = 17

r+y = 5
dr—y+z = 5
11. 2y+62z = 30
r+z = 5
r+y+z = -—17

13.

3 { y—3z = 0
3r —2y+2z = =5
15. r+3y—z = 12
z+y+2z = 0
rT—yt+z =

17. =3z +2y+4z =
T—0y+2z =
20 —y4+2z =1
19. 20 +2y—2z = 1
3r+6y+4z = 9

r+y+z = 3
10. 2e—y+z = 0
—Br+dy+T7z = 7
dr—y+z = 5
12. 2y +62 = 30
zr+z = 6
r—=2y+3z = 7
14. —3r+y+2z = -5
204+2y+2 = 3
20 —y+z = -1
16. dr+3y+5z = 1
5y + 3z = 4
20 —4dy+2 = —7
18. rT—2y+2z = =2
—zr+4dy—2z = 3
r—3y—4z = 3
20. 3r+4y—2 = 13
20 — 19y — 192 = 2
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21.

23.

25.

27.

28.

29.

30.

31.

32.

33.

34.

r+y+z = 4 r—y+z = 8
20 —4dy — 2z = -1 22. 3xr+3y—9z2 = —6
r—y = 2 Tx —2y+5z = 39
20 —3y+2 = —1 20, + x5y — 1205, — 2, = 16
dr —4y+42z = —13 94 —x, + x5+ 12205 — 42, = -5
6r —by+T72z = -—-25 ' 3z, + 21, — 1625 — 32, = 25
L ﬂ?l+2$2—5334 — 11
Ty — Ty = —2 ( x,— 2y —bxy+ 3z, = -1
20, —xy, = 0 2% T, + Ty + 525 — 3, =
"131 - 21:2 + $3 = 0 ’ .'Bg + 51‘3 - 3.’1:4 == 1
_xg + Ty - 1 T, — 2.%'2 — 10%’3 + 63’)4 == _1

Find two other forms of the parametric solution to Exercise 11 above by reorganizing the
equations so that x or y can be the free variable.

A local buffet charges $7.50 per person for the basic buffet and $9.25 for the deluxe buffet
(which includes crab legs.) If 27 diners went out to eat and the total bill was $227.00 before
taxes, how many chose the basic buffet and how many chose the deluxe buffet?

At The Old Home Fill’er Up and Keep on a-Truckin’ Cafe, Mavis mixes two different types
of coffee beans to produce a house blend. The first type costs $3 per pound and the second
costs $8 per pound. How much of each type does Mavis use to make 50 pounds of a blend
which costs $6 per pound?

Skippy has a total of $10,000 to split between two investments. One account offers 3% simple
interest, and the other account offers 8% simple interest. For tax reasons, he can only earn
$500 in interest the entire year. How much money should Skippy invest in each account to
earn $500 in interest for the year?

A 10% salt solution is to be mixed with pure water to produce 75 gallons of a 3% salt solution.
How much of each are needed?

At The Crispy Critter’s Head Shop and Patchouli Emporium along with their dried up weeds,
sunflower seeds and astrological postcards they sell an herbal tea blend. By weight, Type I
herbal tea is 30% peppermint, 40% rose hips and 30% chamomile, Type II has percents 40%,
20% and 40%, respectively, and Type III has percents 35%, 30% and 35%, respectively. How
much of each Type of tea is needed to make 2 pounds of a new blend of tea that is equal
parts peppermint, rose hips and chamomile?

Discuss with your classmates how you would approach Exercise 32 above if they needed to
use up a pound of Type I tea to make room on the shelf for a new canister.

If you were to try to make 100 mL of a 60% acid solution using stock solutions at 20% and
40%, respectively, what would the triangular form of the resulting system look like? Explain.
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8.1.2 ANSWERS

1.

Because triangular form is not unique, we give only one possible answer to that part of the question.
Yours may be different and still be correct.

9.

10.

11.

12.

13.

14.

Consistent independent
Solution (6, —%)

. Consistent independent

Solution (_ 16 %)

. Consistent dependent

Solution (t, %t + 3)
for all real numbers ¢

Inconsistent
No solution

r+y = 5
y =7
5, 7, _
T=3Yy—3% = —

y-i—%z =

z =

O N Wi

-yt =
y+3z = 1
0 =

|
{ L
{
|

O Ut o

Y+ 3z
0 =

I
—_
— Ot o

SYSTEMS OF EQUATIONS AND MATRICES

2. Consistent independent
Solution (—%, —3)

. Consistent independent

Solution (% ,— %g)

6. Consistent dependent

Solution (6 — 4t,t)
for all real numbers ¢

8. Inconsistent
No solution

Consistent independent
Solution (—2,7)

Consistent independent
Solution (1,2,0)

Consistent dependent

Solution (—t + 5, —3t + 15,1)

for all real numbers ¢

Inconsistent
No solution

Consistent dependent
Solution (—4t — 17, 3t,t)
for all real numbers ¢

Consistent independent
Solution (2,—1,1)
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

—_— — — —— —— —— — ——

r+y+2z = 0
—%z = 6
z = =2
At I
ytsz = 3
0 = 1
r—y+z = —4
y—"7z = 17
z = -2
rT—2y+2z = -2
y = 3
z = 1
s-bytds =
—%z = 0
z = 1
r—3y—4z = 3
y+1E = 13
0 = 0
r+y+z = 4
1, _ 3
y+§Z = 3
0 =1
r—y+z = 8
y—2z = —H
z = 1
At I
y+z = —%
0 = 0
x, + 2a, — La, -z,
Ty + 4dxs — 31y
0
0
Ty — T3 — _2
T, %a@ = 0
133—%%1 —

o o o Y&

Consistent independent
Solution (1,3, —2)

Inconsistent
no solution

Consistent independent
Solution (1,3, —2)

Consistent independent

Solution (—3, %, 1)

Consistent independent

Solution (%, %, 1)

Consistent dependent

Solution (%t + %, —%t + %,t)

for all real numbers ¢

Inconsistent
no solution

Consistent independent
Solution (4, —3,1)

Consistent dependent

Solution (—Qt 35 4 11

4 bl
for all real numbers ¢

Consistent dependent

Solution (8s —t + 7, —4s + 3t + 2, s,1)
for all real numbers s and ¢

Consistent independent
Solution (1,2, 3,4)
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26.

27.

28.
29.
30.
31.

32.

SYSTEMS OF EQUATIONS AND MATRICES

T, — Ty —bry+3x, = —1 Inconsistent
Ty +5rs — 31, = % No solution

0 = 1

0 = 0

If z is the free variable then the solution is (¢,3t, —t +5) and if y is the free variable then the
solution is (%t, t, —%t + 5).

13 chose the basic buffet and 14 chose the deluxe buffet.

Mavis needs 20 pounds of $3 per pound coffee and 30 pounds of $8 per pound coffee.
Skippy needs to invest $6000 in the 3% account and $4000 in the 8% account.

22.5 gallons of the 10% solution and 52.5 gallons of pure water.

% — %t pounds of Type I, % — %t pounds of Type II and ¢ pounds of Type III where 0 < ¢ < %.
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8.2 SYSTEMS OF LINEAR EQUATIONS: AUGMENTED MATRICES

In Section 8.1 we introduced Gaussian Elimination as a means of transforming a system of linear
equations into triangular form with the ultimate goal of producing an equivalent system of linear
equations which is easier to solve. If we take a step back and study the process, we see that all of
our moves are determined entirely by the coefficients of the variables involved, and not the variables
themselves. Much the same thing happened when we studied long division in Section 3.2. Just as
we developed synthetic division to streamline that process, in this section, we introduce a similar
bookkeeping device to help us solve systems of linear equations. To that end, we define a matrix
as a rectangular array of real numbers. We typically enclose matrices with square brackets, ‘[” and
‘], and we size matrices by the number of rows and columns they have. For example, the size
(sometimes called the dimension) of
3 0 -1
{ 2 =5 10 }

is 2 x 3 because it has 2 rows and 3 columns. The individual numbers in a matrix are called its
entries and are usually labeled with double subscripts: the first tells which row the element is in
and the second tells which column it is in. The rows are numbered from top to bottom and the
columns are numbered from left to right. Matrices themselves are usually denoted by uppercase
letters (A, B, C, etc.) while their entries are usually denoted by the corresponding letter. So, for
instance, if we have

3 0 -1
A‘[z -5 10]

then a;;, = 3, a;, =0, a5 = —1, ayy = 2, ayy, = —5, and ay,; = 10. We shall explore matrices as
mathematical objects with their own algebra in Section 8.3 and introduce them here solely as a
bookkeeping device. Consider the system of linear equations from number 2 in Example 8.1.2

(E1) 22+4+3y—z = 1
(E2) 10z -2 = 2
(E3) 4x—9y+2z = 5

We encode this system into a matrix by assigning each equation to a corresponding row. Within
that row, each variable and the constant gets its own column, and to separate the variables on the
left hand side of the equation from the constants on the right hand side, we use a vertical bar, |.
Note that in E2, since y is not present, we record its coefficient as 0. The matrix associated with
this system is

T y oz cC
(El)— [ 2 3 —1]1
(E2)— |10 0 —1]2
(E3)— | 4 -9 2|5
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This matrix is called an augmented matrix because the column containing the constants is
appended to the matrix containing the coefficients.! To solve this system, we can use the same
kind operations on the rows of the matrix that we performed on the equations of the system. More
specifically, we have the following analog of Theorem 8.1 below.

Theorem 8.2. Row Operations: Given an augmented matrix for a system of linear equations,
the following row operations produce an augmented matrix which corresponds to an equivalent
system of linear equations.

e Interchange any two rows.

e Replace a row with a nonzero multiple of itself.?

e Replace a row with itself plus a nonzero multiple of another row.”

“That is, the row obtained by multiplying each entry in the row by the same nonzero number.
"Where we add entries in corresponding columns.

As a demonstration of the moves in Theorem 8.2, we revisit some of the steps that were used in
solving the systems of linear equations in Example 8.1.2 of Section 8.1. The reader is encouraged to
perform the indicated operations on the rows of the augmented matrix to see that the machinations
are identical to what is done to the coefficients of the variables in the equations. We first see a
demonstration of switching two rows using the first step of part 1 in Example 8.1.2.

(E1) 3xr—y+z = 3 _ (E1) r—y+z = 5
(B2) 22 —dy+3z = 16 b BlandBS. ) (poy 9y —dy+3z = 16
(E3) r—y+z = b (E3) 3xr—y+z = 3

3 -1 1] 3 1 -1 1] 5

9 _4 3116 Switch R1 and R3 9 _4 3116

1 -1 1] 5 3 -1 1] 3

Next, we have a demonstration of replacing a row with a nonzero multiple of itself using the first
step of part 3 in Example 8.1.2.

1 1
(El) 3.’E1 T AT, = Replace E'1 with %El (El) Ty + §$2 + §$4 = 2
(E2) 2[,51 + xg — :1:3 = 4 (EQ) 2$]_ + 1‘2 — .5[?3 = 4
(E3) zy—3w3—22, = 0 (E3) xy—3x5—22, = 0

3 1 0 1|6 . 1 0 il2

Replace R1 with £ R1 3 3
2 1 -1 04 2 1 -1 04
0 1 -3 =210 0 1 -3 =210

Finally, we have an example of replacing a row with itself plus a multiple of another row using the
second step from part 2 in Example 8.1.2.

1We shall study the coefficient and constant matrices separately in Section 8.3.
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Replace E2 with —10F1 + E2\

Replace E3 with —4E1 + E3

—~
&
[\
S—
—_
o
8
|
I\
I
[ 3 RN
—~
&
\V)
N—
|
—_
Ut
<
_l’_
B
N
I
|
Lo o=

1 3 _L1]1 1 3 _1| 1
10 (2) _i % Replace RZ‘ wijch —10R1 + Pt2 0 — 1% i _%
4 —9 905 Replace R3 with —4R1 + R3 0 —15 4 3

The matrix equivalent of ‘triangular form’ is row echelon form. The reader is encouraged to
refer to Definition 8.3 for comparison. Note that the analog of ‘leading variable’ of an equation

is ‘leading entry’ of a row. Specifically, the first nonzero entry (if it exists) in a row is called the
leading entry of that row.

Definition 8.4. A matrix is said to be in row echelon form provided all of the following
conditions hold:

1. The first nonzero entry in each row is 1.

2. The leading 1 of a given row must be to the right of the leading 1 of the row above it.

3. Any row of all zeros cannot be placed above a row with nonzero entries.

To solve a system of a linear equations using an augmented matrix, we encode the system into an
augmented matrix and apply Gaussian Elimination to the rows to get the matrix into row-echelon
form. We then decode the matrix and back substitute. The next example illustrates this nicely.

Example 8.2.1. Use an augmented matrix to transform the following system of linear equations
into triangular form. Solve the system.

dJr—y+z = 8
r+2y—z = 4
2v4+3y—4z = 10

Solution. We first encode the system into an augmented matrix.

3r—y+z = 8 . . 3 -1 1] 8
T+ 2y o, = 4 Encode into the matrix 1 9 _1 4
20 +3y—4z = 10 2 3 —4/|10

Thinking back to Gaussian Elimination at an equations level, our first order of business is to get =
in E1 with a coefficient of 1. At the matrix level, this means getting a leading 1 in R1. This is in
accordance with the first criteria in Definition 8.4. To that end, we interchange R1 and R2.

3 -1 1|8 . 1 2 -1 4
1 9 _q 4 Switch R1 and R2 3 1 1 8
2 3 —4110 2 3 —4110
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Our next step is to eliminate the z’s from E2 and F3. From a matrix standpoint, this means we
need 0’s below the leading 1 in R1. This guarantees the leading 1 in R2 will be to the right of the
leading 1 in R1 in accordance with the second requirement of Definition 8.4.

b2 174 Replace R2 with —3R1 + R2 L2 -1 4
3 -1 1| 8 eplace 1tz with =5/t + 0 -7 4|4

9 3 4110 Replace R3 with —2R1 + R3 0 -1 -2 9

Now we repeat the above process for the variable y which means we need to get the leading entry
in R2 to be 1.

1 2 -1 4 ) 1 2 —-11|4
0 —7 Al —4 Replace R2 with —%R2 0 1 _% %
0 -1 -2 2 0 -1 —-2|2

To guarantee the leading 1 in R3 is to the right of the leading 1 in R2, we get a 0 in the second
column of R3.

1 2 —-1]4 , 1 —-1] 4
0 1 44 Replace R3 with R2 + R3 4 4
T 7 7
0 -1 —-2|2 _ 18| 18
0 7 7
Finally, we get the leading entry in R3 to be 1.
1 2 -1\ 4 _
4 4 Replace R3 with 71—781%3 1 2 i 3
0 1 -7\ 7 0 1 —z7] 7
0o 0 — % 178 0 0 1] -1
Decoding from the matrix gives a system in triangular form
1 2 —-1] 4 ) r+2y—2z = 4
0 1 - 4 4 Decode from the matrix . éz _ 4
7 7 7 7
0 O —1 z = -1

Wegetz=-1,y=322+12=2(-1)+2=0andz=-2y+z+4=-20)+(-1)+4=3fora
final answer of (3,0, —1). We leave it to the reader to check. O

As part of Gaussian Elimination, we used row operations to obtain 0’s beneath each leading 1 to
put the matrix into row echelon form. If we also require that 0’s are the only numbers above a
leading 1, we have what is known as the reduced row echelon form of the matrix.

Definition 8.5. A matrix is said to be in reduced row echelon form provided both of the
following conditions hold:

1. The matrix is in row echelon form.

2. The leading 1s are the only nonzero entry in their respective columns.
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Of what significance is the reduced row echelon form of a matrix? To illustrate, let’s take the row
echelon form from Example 8.2.1 and perform the necessary steps to put into reduced row echelon
form. We start by using the leading 1 in R3 to zero out the numbers in the rows above it.

1 2 -1 4 ) 1 2 0] 3
0 1 _% % Replace R1 v&.nth 4R3 + R1 01 0 0
0 0 11 -1 Replace R2 with = R3 + R2 00 1/|-1
Finally, we take care of the 2 in R1 above the leading 1 in R2.
L 20 Replace R1 with —2R2 + R1 100 3
010/ 0 cpace ML W AT 01 0| 0
0 0 1|-1 0 0 1|-1

To our surprise and delight, when we decode this matrix, we obtain the solution instantly without
having to deal with any back-substitution at all.

1 00| 3 . . r = 3
0 1 O 0 ecode from the matrix y = 0
00 1]-1 z = -1

Note that in the previous discussion, we could have started with R2 and used it to get a zero above
its leading 1 and then done the same for the leading 1 in R3. By starting with R3, however, we get
more zeros first, and the more zeros there are, the faster the remaining calculations will be.? It is
also worth noting that while a matrix has several® row echelon forms, it has only one reduced row
echelon form. The process by which we have put a matrix into reduced row echelon form is called
Gauss-Jordan Elimination.

Example 8.2.2. Solve the following system using an augmented matrix. Use Gauss-Jordan Elim-
ination to put the augmented matrix into reduced row echelon form.

To — 3«%‘1 + Ty - 2
21‘1 + 41’3 - 5
dry —x, = 3

Solution. We first encode the system into a matrix. (Pay attention to the subscripts!)

Ty — 3.%'1 + ry = 2 . . —3 1 0 1 2
21‘1 + 43}3 - 5 Encode into the matrix 9 0 4 0l5
4.%'2 — Ty = 3 0 4 0 —1 3

Next, we get a leading 1 in the first column of R1.

1 1 2

—3 1 0 112 Replace R1 with —%Rl 1 - 3 0 - 313
2 0 4 015 2 0 4 0 )

0 4 0 —-1/|3 0 4 0 -1 3

2Carl also finds starting with R3 to be more symmetric, in a purely poetic way.
3infinite, in fact
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Now we eliminate the nonzero entry below our leading 1.

1 -1 o —1|-2 1 -3 0 —3|-3
3 3 3 ith —
9 0 4 0 5 Replace R2 with —2R1 + R2 0 % 4 % 1379
o 4 0 -1} 3 0 4 0 —-1| 3
We proceed to get a leading 1 in R2.
1 1 _1_2 1 1 _1_2
; 0 % 13 Replace R2 with %RQ 3 0 3 18
o 5 4 3| 5 > 0 1 6 1| 5
0o 4 0 -1 3 0o 4 0 -1 3
We now zero out the entry below the leading 1 in R2
1 -1 0 —1|_-2 1 -1 0 —1| 2
3 3 3 . 3 3 3
0 1 6 1 129 Replace R3 with —4R2 + R3 0 1 6 1 1?9
0o 4 0 -1 3 0 0 —24 —-5|-35
Next, it’s time for a leading 1 in R3
1 1 0 —1| 2 1 -1 o —L1]|_2
3 3 3 . 3 3 3
0 1 6 1 % Replace R3 with — L R3 0 1 6 1 129
5 | 35
0 0 —-24 —-5|-35 0 0 1 5| 5

The matrix is now in row echelon form. To get the reduced row echelon form, we start with the
last leading 1 we produced and work to get 0’s above it.

1 1 o —1|_2 1 -1 o —L1|_2
3 3 3 _ 3 3 3
0 1 6 1 % Replace R2 with —6R3 + R2 0 1 0 _% %
5 | 35 5 | 35
0 0 1 | 5 0 0 1 35| 57
Lastly, we get a 0 above the leading 1 of R2.
1 -1 0 —1|_-2 0 0 —-2]—-5
3 5003 Replace R1 with £ R2 + R1 12 12
o o 1 2|4 R
0 0 1 | 57 0o 0 1 o) 7
At last, we decode to get
1 0 0 -5 |- T, — 2r, = —32
0 1 0 1% 1% Decode from the matrix ' 1% ! 1%
1 1 Ta — 4Ta 1
5 35 5 _ 35
We have that x, is free and we assign it the parameter t. We obtain x5 = t + ;’i, = %t + %,
and x, = 5t—— Our solution 18{( t—ﬁ,%t—i—f ——t—i—gi,t) —oo<t<oo} and leave it to

the reader to check O
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Like all good algorithms, putting a matrix in row echelon or reduced row echelon form can easily
be programmed into a calculator, and, doubtless, your graphing calculator has such a feature. We
use this in our next example.

Example 8.2.3. Find the quadratic function passing through the points (-1, 3), (2,4), (5, —2).

Solution. According to Definition 2.5, a quadratic function has the form f(z) = az?+ bz +c where
a # 0. Our goal is to find a, b and ¢ so that the three given points are on the graph of f. If (—1,3)
is on the graph of f, then f(—1) = 3, or a(—1)? 4+ b(—1) + ¢ = 3 which reduces to a — b+ ¢ = 3,
an honest-to-goodness linear equation with the variables a, b and c. Since the point (2,4) is also
on the graph of f, then f(2) = 4 which gives us the equation 4a + 2b + ¢ = 4. Lastly, the point
(5,—2) is on the graph of f gives us 25a + 5b+ ¢ = —2. Putting these together, we obtain a system
of three linear equations. Encoding this into an augmented matrix produces

a—b+c = 3 . . 1 -1 1 3
da+2%+c = 4 Encode into the matrix 4 9 1 4
25a+5b+c = -2 25 5 1| -2
Using a calculator,* we find a = —-%, b = % and ¢ = %7. Hence, the one and only quadratic which

187
fits the bill is f(x) = —%ZL‘Q + %x%—%. To verify this analytically, we see that f(—1) =3, f(2) =4,
and f(5) = —2. We can use the calculator to check our solution as well by plotting the three data
points and the function f.

et [A] 2 rFrac [
Y6 T8 15018 A
[B & 1 37-9 11 |

The graph of f(x
with the points (—

— 7.2 3
,3), (2,4) and (5, —2)

4We’ve tortured you enough already with fractions in this exposition!
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8.2.1 EXERCISES

SYSTEMS OF EQUATIONS AND MATRICES

In Exercises 1 - 6, state whether the given matrix is in reduced row echelon form, row echelon form

only or in neither of those forms.

1 0|3
1'_013]

1.0 00
4101 0/0

00 0]1

1
0
0

o = O

S W

1

3
6
0

O = =
w
D

In Exercises 7 - 12, the following matrices are in reduced row echelon form. Determine the solution
of the corresponding system of linear equations or state that the system is inconsistent.

(1 0] -2

"o 7]
1.0 0 3]0
0. |0 1 2 6|0
000 01

11.

S O =

o O O -

o = O

O O = O

0
0
1

-3
20
19

-8
4
0
0

1

0
0

12.

(100 3| 4
010 6|6
(00 10| 2
(1 0 9]-3
0 1 —4]20
0 0] 0

O O N

In Exercises 13 - 26, solve the following systems of linear equations using the techniques discussed
in this section. Compare and contrast these techniques with those you used to solve the systems

in the Exercises in Section 8.1.

1. {

15.

-5 +y
r+y

e —y+ 2
2y + 62
T+ z

3x—2y+ =z
rT+3y—=z
r+y+ 2z

17.

rT—y+z
—3x + 2y + 4z
T — oy + 22

19. -5

—18

—— —— —/

14.

16.

18.

20.

r+y+z
20 —y+z
—3x+ 05y + 7z

r—2y+ 3z
=3z +y+2z
20 + 2y + 2

20 —y+ =z
dr 4 3y + 5z
oy + 3z

20 —4dy + 2
T —2y+ 2z
—r 44y — 2z
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21.

23.

25.

27.

28.

29.
30.

31.

32.

33.

20 —y+2z = 1 r—3y—4z = 3
20+2y—2z =1 22. 3x+4y—2 = 13
3r+6y+4z = 9 20 — 19y — 19z = 2

r+y+z = 4 rT—y+z = 8
20 —4dy—z = -1 24. 3r+3y—92 = —6

r—y = 2 Tr—2y+5z = 39

20 —-3y+z2z = -1 T, — Ty = —2
dr —4y+42 = —13 926 20, —x, = 0
6r—by+7z = =25 ’ T, — 2T, + T3 = 0

—r3+xT, = 1

It’s time for another meal at our local buffet. This time, 22 diners (5 of whom were children)
feasted for $162.25, before taxes. If the kids buffet is $4.50, the basic buffet is $7.50, and the
deluxe buffet (with crab legs) is $9.25, find out how many diners chose the deluxe buffet.

Carl wants to make a party mix consisting of almonds (which cost $7 per pound), cashews
(which cost $5 per pound), and peanuts (which cost $2 per pound.) If he wants to make a 10
pound mix with a budget of $35, what are the possible combinations almonds, cashews, and
peanuts? (You may find it helpful to review Example 8.1.3 in Section 8.1.)

Find the quadratic function passing through the points (-2, 1), (1,4), (3, —2)

At 9 PM, the temperature was 60°F; at midnight, the temperature was 50°F; and at 6 AM,
the temperature was 70°F . Use the technique in Example 8.2.3 to fit a quadratic function
to these data with the temperature, T, measured in degrees Fahrenheit, as the dependent
variable, and the number of hours after 9 PM, ¢, measured in hours, as the independent
variable. What was the coldest temperature of the night? When did it occur?

The price for admission into the Stitz-Zeager Sasquatch Museum and Research Station is $15
for adults and $8 for kids 13 years old and younger. When the Zahlenreich family visits the
museum their bill is $38 and when the Nullsatz family visits their bill is $39. One day both
families went together and took an adult babysitter along to watch the kids and the total
admission charge was $92. Later that summer, the adults from both families went without
the kids and the bill was $45. Is that enough information to determine how many adults
and children are in each family? If not, state whether the resulting system is inconsistent or
consistent dependent. In the latter case, give at least two plausible solutions.

Use the technique in Example 8.2.3 to find the line between the points (—3,4) and (6,1).
How does your answer compare to the slope-intercept form of the line in Equation 2.37

With the help of your classmates, find at least two different row echelon forms for the matrix

1 213
4 128
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8.2.2 ANSWERS
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1. Reduced row echelon form 2. Neither
3. Row echelon form only 4. Reduced row echelon form
5. Reduced row echelon form 6. Row echelon form only
7. (=2,7) 8. (—3,20,19)
9. (—3t+4,—6t —6,2,1) 10. Inconsistent
for all real numbers ¢
11. (8s —t+7,—4s+ 3t + 2,s,1) 12. (=9t — 3,4t + 20,t)
for all real numbers s and ¢ for all real numbers ¢
13. (=2,7) 14. (1,2,0)
15. (=t + 5,3t + 15,1 16. (2,-1,1)
for all real numbers ¢
17. (1,3,-2) 18. Inconsistent
19. (1,3,-2) 20. (-3,3,1)
21. (3,2,1) 22. (Bt+ 5%, —5t+ 1351
for all real numbers ¢
23. Inconsistent 24. (4,-3,1)
25. (=2t — 3, ¢t 14 26. (1,2,3,4)

for all real numbers ¢

27. This time, 7 diners chose the deluxe buffet.

28. If ¢ represents the amount (in pounds) of peanuts, then we need 1.5t — 7.5 pounds of almonds
and 17.5 — 2.5t pounds of cashews. Since we can’t have a negative amount of nuts, 5 <t < 7.

29. f(z)=—22+1a+ 2

30. T(t) = 22t — 39¢ + 60. Lowest temperature of the evening 2% ~ 49.58°F at 12:45 AM.
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31. Let x; and x, be the numbers of adults and children, respectively, in the Zahlenreich family
and let 3 and x, be the numbers of adults and children, respectively, in the Nullsatz family.
The system of equations determined by the given information is

15z, + 8z, = 38

1525 + 8z, 39

152, + 8xy + 1525 +8x, = 77
15z, + 1525, = 45

We subtracted the cost of the babysitter in E3 so the constant is 77, not 92. This system is
consistent dependent and its solution is (l%t + %, —t+4, —%t + 1—;’, t). Our variables repre-
sent numbers of adults and children so they must be whole numbers. Running through the
values t = 0,1,2,3,4 yields only one solution where all four variables are whole numbers;
t = 3 gives us (2,1, 1,3). Thus there are 2 adults and 1 child in the Zahlenreichs and 1 adult
and 3 kids in the Nullsatzs.
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8.3 MATRIX ARITHMETIC

In Section 8.2, we used a special class of matrices, the augmented matrices, to assist us in solving
systems of linear equations. In this section, we study matrices as mathematical objects of their
own accord, temporarily divorced from systems of linear equations. To do so conveniently requires
some more notation. When we write A = [a;;],. ..., we mean A is an m by n matrix' and a;; is the
entry found in the ¢th row and jth column. Schematically, we have

7 counts columns

from left to right

Gy Qg - Gy
A - Qo1 Qg2 - Qop i counts rows
from top to bottom
Am1 Gma " Gmn

With this new notation we can define what it means for two matrices to be equal.

Definition 8.6. Matrix Equality: Two matrices are said to be equal if they are the same size
and their corresponding entries are equal. More specifically, if A = [a;;] and B = [b;;]
we write A = B provided

mxn pXr?

1. m=pandn=r

2. a;j=1bjjforalll <i<mandalll<j<n.

Essentially, two matrices are equal if they are the same size and they have the same numbers in
the same spots.? For example, the two 2 x 3 matrices below are, despite appearances, equal.

0 -2 9] [ In@1) -8 e2n(3)
25 117 =3 | | 125%/% 32.13 log(0.001)

Now that we have an agreed upon understanding of what it means for two matrices to equal each
other, we may begin defining arithmetic operations on matrices. Our first operation is addition.

Definition 8.7. Matrix Addition: Given two matrices of the same size, the matrix obtained
by adding the corresponding entries of the two matrices is called the sum of the two matrices.
More specifically, if A = [a;;] and B = [b;;] we define

mxn mxn’

A+ B = [aijlen t Bislinxn = [aij + bij]

As an example, consider the sum below.

'Recall that means A has m rows and n columns.
2(Critics may well ask: Why not leave it at that? Why the need for all the notation in Definition 8.67 It is the
authors’ attempt to expose you to the wonderful world of mathematical precision.
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2 3 1 4 2+ (-1) 344 17
4 =1 |+ | -5 3| =|44+(=5) (-)+(-3) | =] -1 —4
0 -7 8 1 0+8 (=7)+1 8 —6

It is worth the reader’s time to think what would have happened had we reversed the order of the
summands above. As we would expect, we arrive at the same answer. In general, A+ B=B+ A
for matrices A and B, provided they are the same size so that the sum is defined in the first place.
This is the commutative property of matrix addition. To see why this is true in general, we
appeal to the definition of matrix addition. Given A = [a;;] and B = [b;;]

mxn mxn’

A+ B = [aij],n T Bilnsn = @i + bigly e = [0ij + @ijln = Biglpn T (@il yn = B+ A

where the second equality is the definition of A + B, the third equality holds by the commutative
law of real number addition, and the fourth equality is the definition of B 4+ A. In other words,
matrix addition is commutative because real number addition is. A similar argument shows the
associative property of matrix addition also holds, inherited in turn from the associative law
of real number addition. Specifically, for matrices A, B, and C of the same size, (A + B) + C =
A+ (B+C). In other words, when adding more than two matrices, it doesn’t matter how they are
grouped. This means that we can write A + B 4 C without parentheses and there is no ambiguity
as to what this means.® These properties and more are summarized in the following theorem.

Theorem 8.3. Properties of Matrix Addition
e Commutative Property: For all m x n matrices, A+ B=B+ A
e Associative Property: For all m x n matrices, (A+ B)+C =A+ (B+C)

e Identity Property: If 0,,x, is the m X n matrix whose entries are all 0, then 0,,x,, is
called the m X n additive identity and for all m x n matrices A

A+0m><n:0m><n+A:A

e Inverse Property: For every given m x n matrix A, there is a unique matrix denoted
—A called the additive inverse of A such that

A+ (=4) = (=A) + A= Omxn

The identity property is easily verified by resorting to the definition of matrix addition; just as the
number 0 is the additive identity for real numbers, the matrix comprised of all 0’s does the same
job for matrices. To establish the inverse property, given a matrix A = [ay], ., we are looking

for a matrix B = [b;], ., so that A+ B = Opxpn. By the definition of matrix addition, we must

3A technical detail which is sadly lost on most readers.
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have that a;; + b;; = 0 for all 7 and j. Solving, we get b;; = —a;;. Hence, given a matrix A,
its additive inverse, which we call —A, does exist and is unique and, moreover, is given by the
formula: —A = [~ayj],, ... The long and short of this is: to get the additive inverse of a matrix,
take additive inverses of each of its entries. With the concept of additive inverse well in hand, we
may now discuss what is meant by subtracting matrices. You may remember from arithmetic that
a —b=a+ (—b); that is, subtraction is defined as ‘adding the opposite (inverse).” We extend this
concept to matrices. For two matrices A and B of the same size, we define A — B = A+ (—B). At
the level of entries, this amounts to

A—=B=A+(=B) = laijl,yn + [“bislynn = [ai + (=bij)lp = @i = bigly s

Thus to subtract two matrices of equal size, we subtract their corresponding entries. Surprised?

mxn

Our next task is to define what it means to multiply a matrix by a real number. Thinking back to
arithmetic, you may recall that multiplication, at least by a natural number, can be thought of as
‘rapid addition.” For example, 2+ 2 4 2 = 3 - 2. We know from algebra® that 3z = z + = + z, so it

seems natural that given a matrix A, we define 34 = A+ A+ A. If A = [a;;] we have

mxn’

3A=A+ A+ A= aijln T Q] n T (i, = laij + aij + aijly, 0 = 8], 0

In other words, multiplying the matriz in this fashion by 3 is the same as multiplying each entry
by 3. This leads us to the following definition.

Definition 8.8. Scalar® Multiplication: We define the product of a real number and a
matrix to be the matrix obtained by multiplying each of its entries by said real number. More
specifically, if k is a real number and A = [a;], .., we define

kA =k [aij] = [k:aij]

mxn mxXn

“The word ‘scalar’ here refers to real numbers. ‘Scalar multiplication’ in this context means we are multiplying
a matrix by a real number (a scalar).

One may well wonder why the word ‘scalar’ is used for ‘real number.” It has everything to do with
‘scaling’ factors.” A point P(z,y) in the plane can be represented by its position matrix, P:

(xvy)HPz[:;]

Suppose we take the point (—2,1) and multiply its position matrix by 3. We have

_ 21 [3(-2)] | -6
s =[50 =[S
which corresponds to the point (—6,3). We can imagine taking (—2,1) to (—6,3) in this fashion as

a dilation by a factor of 3 in both the horizontal and vertical directions. Doing this to all points
(z,y) in the plane, therefore, has the effect of magnifying (scaling) the plane by a factor of 3.

4The Distributive Property, in particular.
®See Section 1.7.
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As did matrix addition, scalar multiplication inherits many properties from real number arithmetic.
Below we summarize these properties.

Theorem 8.4. Properties of Scalar Multiplication

e Associative Property: For every m x n matrix A and scalars k and r, (kr)A = k(rA).

Identity Property: For all m x n matrices A, 1A = A.

e Additive Inverse Property: For all m x n matrices A, —A = (—1)A.

Distributive Property of Scalar Multiplication over Scalar Addition: For every
m X n matrix A and scalars k and r,

(k+r)A=kA+rA

Distributive Property of Scalar Multiplication over Matrix Addition: For all
m X n matrices A and B scalars k,

k(A+ B) = kA + kB

Zero Product Property: If A is an m X n matrix and k is a scalar, then

kA =0pxn ifand onlyif k=0 or A= 0,xn

As with the other results in this section, Theorem 8.4 can be proved using the definitions of scalar
multiplication and matrix addition. For example, to prove that k(A + B) = kA + kB for a scalar k
and m x n matrices A and B, we start by adding A and B, then multiplying by k£ and seeing how
that compares with the sum of kA and kB.

k(A4 B) =k ([aij] pn + Dijlsn) = Flaij + gl = [ (@i +0ij)],, 0, = [Rai; + kil
As for kA + kB, we have
kA+ kB =k [aij]mxn + k [bij]mxn = [kaij]mxn + [kbij]mxn = [kaij + kbij]mxn v

which establishes the property. The remaining properties are left to the reader. The properties in
Theorems 8.3 and 8.4 establish an algebraic system that lets us treat matrices and scalars more or
less as we would real numbers and variables, as the next example illustrates.

Example 8.3.1. Solve for the matrix A: 34— <[ g _; } +5A> = [ _gl _g ] —i—l [ _9 12 ]

using the definitions and properties of matrix arithmetic.
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Solution.

(=D(2) (=D(=

A [ (-1)3)

The reader is e

SYSTEMS OF EQUATIONS AND MATRICES

[ —4 2'+1[ 9 12}
6 —2] " " 3[ -3 39
-1 2] [ Ge (¢)a
6 —2]7 | ()3 ()69
[ —4 2'+[ 3 4]
6 —2 | -1 13
C L 6
5 11 |
-1 6|
5 11 |
—-1 6]
5 11 |
-1 6|
5 11 |
~1 6]
5 11
-1 6 -2 1
5 11_+<_[—3 —5D
—-1 6] -2 1
5 11_‘[—3 —5]
—1-(-2) 6—1
5—(=3) 11—(—5)}
1 5
8 16]
1 5
_5[8 16}
(=)W (—%)(5)]
(=3)®) (=3)(16)
_1 5
2
—4 _126]
_1 5
2
e
iginal equation. O
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While the solution to the previous example is written in excruciating detail, in practice many of
the steps above are omitted. We have spelled out each step in this example to encourage the reader
to justify each step using the definitions and properties we have established thus far for matrix
arithmetic. The reader is encouraged to solve the equation in Example 8.3.1 as they would any
other linear equation, for example: 3a — (2 4 ba) = —4 + %(9)

We now turn our attention to matrix multiplication - that is, multiplying a matrix by another
matrix. Based on the ‘no surprises’ trend so far in the section, you may expect that in order to
multiply two matrices, they must be of the same size and you find the product by multiplying the
corresponding entries. While this kind of product is used in other areas of mathematics,® we define
matrix multiplication to serve us in solving systems of linear equations. To that end, we begin by
defining the product of a row and a column. We motivate the general definition with an example.
Consider the two matrices A and B below.

3 1 2 =8
A:[_lg (3) _H B=|4 8 -5 9
5 0 -2 -—12
Let R1 denote the first row of A and C'1 denote the first column of B. To find the ‘product’ of R1
with C'1, denoted R1-C'1, we first find the product of the first entry in R1 and the first entry in C'1.
Next, we add to that the product of the second entry in R1 and the second entry in C'1. Finally,
we take that sum and we add to that the product of the last entry in R1 and the last entry in C'1.
Using entry notation, R1-C1 = a0y, + @190 +a1305 = (2)(3)+(0)(4)+(—-1)(5) = 64+0+(—5) = 1.
We can visualize this schematically as follows

s o _{1[3 1 2 -8
10 3 5|2 %9
5 0 -2 —12

3 -, 3
2 [o] -1 [4] 2 0 [-1] 4
5

a11b1y + 12021 + a13b3,

(2)(3) + (0)(4) + (=1)(5)
To find R2 - C3 where R2 denotes the second row of A and C'3 denotes the third column of B, we
proceed similarly. We start with finding the product of the first entry of R2 with the first entry in
C3 then add to it the product of the second entry in R2 with the second entry in C'3, and so forth.
Using entry notation, we have R2-C3 = a21013+a220234 23033 = (—10)(2)+(3)(—=5)+(5)(—2) = —45.
Schematically,

ot

S PR
—10 3 5

5 0 =2 12

6See this article on the Hadamard Product.
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. 2
—10] 3 5 -5 -10 [3] 5 [-=5] —103
~2 —2 —2

15 4+ assbs = (5)(=2) = —10

A21b15 = (_10)(2) =-20 + (2ba3 = (3)(_5)

Generalizing this process, we have the following definition.

Definition 8.9. Product of a Row and a Column: Suppose A = [a;j|mxn and B = [bi;]nxr-
Let Ri denote the ith row of A and let Cj denote the jth column of B. The product of R;
and Cj, denoted R; - Cj is the real number defined by

Ri-Cj= ailblj aF ainQj -+ ... ambnj

Note that in order to multiply a row by a column, the number of entries in the row must match
the number of entries in the column. We are now in the position to define matrix multiplication.

Definition 8.10. Matrix Multiplication: Suppose A = [aijlmxn and B = [bij|nx,. Let Ri
denote the ith row of A and let Cj denote the jth column of B. The product of A and B,
denoted AB, is the matrix defined by
AB = [Ri - Cj), v

that is

R1-C1 R1-C2 ... R1-Cr

R2-C1 R2-C2 ... R2-Cr

AB = .
Rm-C1 Rm-C2 ... Rm-Cr

There are a number of subtleties in Definition 8.10 which warrant closer inspection. First and
foremost, Definition 8.10 tells us that the ij-entry of a matrix product AB is the ith row of A
times the jth column of B. In order for this to be defined, the number of entries in the rows of A
must match the number of entries in the columns of B. This means that the number of columns
of A must match” the number of rows of B. In other words, to multiply A times B, the second
dimension of A must match the first dimension of B, which is why in Definition 8.10, A%y is being
multiplied by a matrix B, «,. Furthermore, the product matrix AB has as many rows as A and as
many columns of B. As a result, when multiplying a matrix A,,x, by a matrix B, x,, the result is
the matrix AB,,«,. Returning to our example matrices below, we see that A is a 2 x 3 matrix and
B is a 3 x 4 matrix. This means that the product matrix AB is defined and will be a 2 x 4 matrix.

3 1 2 -8
A:[_lg g_é} B=|4 8 -5 9
5 0 -2 —12

"The reader is encouraged to think this through carefully.
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Using Ri to denote the ith row of A and C'j to denote the jth column of B, we form AB according
to Definition 8.10.

AB — R1-Cl1 R1-C2 R1-C3 R1-C4 B 1 2 6 —4
N R2-C1 R2-C2 R2-C3 R2-C4 - 7 14 —45 47

Note that the product BA is not defined, since B is a 3 X 4 matrix while A is a 2 X 3 matrix; B has
more columns than A has rows, and so it is not possible to multiply a row of B by a column of A.
Even when the dimensions of A and B are compatible such that AB and BA are both defined, the
product AB and BA aren’t necessarily equal.® In other words, AB may not equal BA. Although
there is no commutative property of matrix multiplication in general, several other real number
properties are inherited by matrix multiplication, as illustrated in our next theorem.

Theorem 8.5. Properties of Matrix Multiplication Let A, B and C' be matrices such that
all of the matrix products below are defined and let k be a real number.

e Associative Property of Matrix Multiplication: (AB)C = A(BC)
e Associative Property with Scalar Multiplication: k(AB) = (kA)B = A(kB)

e Identity Property: For a natural number £, the k X k identity matrix, denoted I, is
defined by I}, = [dij],.., where

L1 =]
Y1 0, otherwise

For all m x n matrices, I,,A = Al, = A.

e Distributive Property of Matrix Multiplication over Matrix Addition:

A(B+C) = AB £ AC and (A + B)C = AC £ BC

The one property in Theorem 8.5 which begs further investigation is, without doubt, the multi-
plicative identity. The entries in a matrix where ¢ = j comprise what is called the main diagonal
of the matrix. The identity matrix has 1’s along its main diagonal and 0’s everywhere else. A few
examples of the matrix I mentioned in Theorem 8.5 are given below. The reader is encouraged to
see how they match the definition of the identity matrix presented there.

1 0 0 O
[1][10] (1)(1)8 0100
0 1 00 1 0 0 1 0
0 0 0 1
L L I, I,

8 And may not even have the same dimensions. For example, if A is a 2 x 3 matrix and B is a 3 x 2 matrix, then
AB is defined and is a 2 X 2 matrix while BA is also defined... but is a 3 X 3 matrix!
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The identity matrix is an example of what is called a square matrix as it has the same number
of rows as columns. Note that to in order to verify that the identity matrix acts as a multiplicative
identity, some care must be taken depending on the order of the multiplication. For example, take
the matrix 2 x 3 matrix A from earlier

2 0 -1
A‘[—m 3 5]

In order for the product Iy A to be defined, k = 2; similarly, for Al to be defined, k = 3. We leave
it to the reader to show I,bA = A and Al = A. In other words,

[10H 2 0_1}:[ 2 o_w
0 1 —10 3 5 —-10 3 5
and
20 o] <[ 2 0
0 0 1

While the proofs of the properties in Theorem 8.5 are computational in nature, the notation becomes
quite involved very quickly, so they are left to a course in Linear Algebra. The following example
provides some practice with matrix multiplication and its properties. As usual, some valuable
lessons are to be learned.

Example 8.3.2.

-3 2
1. Find AB for A = -2 -1 7 and B = 15
46 2 —34 4 3

9. Find €2 — 5C + 101, for C = [; _Z]

3. Suppose M is a 4 x 4 matrix. Use Theorem 8.5 to expand (M — 21,) (M + 31,).

Solution.

-3 2
-23 -1 17 00
1. We have AB = 16 9 _34] _le g _[O 0}

2

2. Just as 22 means z times itself, C? denotes the matrix C' times itself. We get
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- 2
1 -2 1 -2 10
2 _ _ _
C* —5C + 101, 3 4] 5[3 4}+10[0 1}

_[r 2] 2], [ 5 w], [0 o0
T 13 4|3 4 ~15 —20 0 10

[ -5 -10 N 5 10
1510 —-15 -10

_Joo
100

3. We expand (M — 2I,) (M + 3I,) with the same pedantic zeal we showed in Example 8.3.1.
The reader is encouraged to determine which property of matrix arithmetic is used as we
proceed from one step to the next.

(M —2L) (M +3L) = (M—2L)M+ (M —2I,) (31,)

= MM — (2I,) M + M (31,) — (21I,) (31,)
= M2 —2(I,M)+3(MI,)—2(I,(3L))
= M?—2M +3M —2(3(L,1,))

= M?4+ M —6I,
O

Example 8.3.2 illustrates some interesting features of matrix multiplication. First note that in
part 1, neither A nor B is the zero matrix, yet the product AB is the zero matrix. Hence, the
the zero product property enjoyed by real numbers and scalar multiplication does not hold for
matrix multiplication. Parts 2 and 3 introduce us to polynomials involving matrices. The reader is
encouraged to step back and compare our expansion of the matrix product (M — 21,) (M + 31,) in
part 3 with the product (z — 2)(z + 3) from real number algebra. The exercises explore this kind
of parallel further.

As we mentioned earlier, a point P(z,y) in the xy-plane can be represented as a 2 x 1 position
matrix. We now show that matrix multiplication can be used to rotate these points, and hence
graphs of equations.

2

NG
2

Example 8.3.3. Let R =

H

ST

1. Plot P(2,-2), Q(4,0), S(0,3), and T(—3,—3) in the plane as well as the points RP, RQ,
RS, and RT. Plot the lines y = x and y = —z as guides. What does R appear to be doing
to these points?

2. If a point P is on the hyperbola z? — y? = 4, show that the point RP is on the curve y = %
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Rp:[

We have that R takes (2,—2) to (2v/2,0). Similarly, we find (4,0) is moved to (2v/2,2v/2), (0,3)
is moved to (—%, 32&), and (—3,—3) is moved to (0, —3+/2). Plotting these in the coordinate

plane along with the lines y = z and y = —z, we see that the matrix R is rotating these points
counterclockwise by 45°.

)

\ 41 s
N RQ//
\\ /,05 {

N N

\*\ 2+ // \
S N ’ \
N1 7 \
AN RP
t t + t t +—at +
—4 -3 -2 -17 \\1 2 13 Q@ x
a /
4 Ny
0 T2y >
T P
7 -3+ \\
VRS \
4 So 41 \
e =~ —% RT N

NN R
RP = | 5 2
2 2
_ [ By
ot Py

which means R takes (z,y) to (721‘ — gy, @x + gy) To show that this point is on the curve

= 2 we replace = with V2, @y and y with V204 ﬁy and simplify.
Y=z 2 2 2 2
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2
-
V2. V2, L 2
5L+ 5y .2,
V2. VBN (Ve . vE\ 2 2 Vi, 3
(o) (B ) £ (5 ) ($- )
I
2 2 ?
(4 - ()" -
x2—y2é4

Since (x,) is on the hyperbola 22 — y? = 4, we know that this last equation is true. Since all of
our steps are reversible, this last equation is equivalent to our original equation, which establishes
the point is, indeed, on the graph of y = 2. This means the graph of y = % is a hyperbola, and it

x
is none other than the hyperbola 22 — y? = 4 rotated counterclockwise by 45°.° Below we have the
2

graph of 2% — y* = 4 (solid line) and y = 2 (dashed line) for comparison.

Y
A
rl

N W e
4 J
_ -

O]

When we started this section, we mentioned that we would temporarily consider matrices as their
own entities, but that the algebra developed here would ultimately allow us to solve systems of
linear equations. To that end, consider the system

3x—y+z = 8
r+2y—z = 4
2c+3y—4z = 10

In Section 8.2, we encoded this system into the augmented matrix

3 —1 1] 8
1 2 —-1| 4
2 3 —4|10

9See Section 7.5 for more details.
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Recall that the entries to the left of the vertical line come from the coefficients of the variables in
the system, while those on the right comprise the associated constants. For that reason, we may
form the coefficient matrix A, the unknowns matrix X and the constant matrix B as below

3 -1 1 x 8
A=1|1 2 -1 X=1uy B = 4
2 3 —4 z 10

We now consider the matrix equation AX = B.

AX = B
3 -1 1 x| [ 8]
1 2 -1 Y = 4
2 3 -4 Z | | 10 |
3r—y+2 | [ 8]
rT+2y—=z = 4
2 + 3y — 4z | | 10 |

We see that finding a solution (x,y, z) to the original system corresponds to finding a solution X
for the matrix equation AX = B. If we think about solving the real number equation ax = b, we
would simply ‘divide’ both sides by a. Is it possible to ‘divide’ both sides of the matrix equation
AX = B by the matrix A? This is the central topic of Section 8.4.
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8.3.1 EXERCISES

For each pair of matrices A and B in Exercises 1 - 7, find the following, if defined

e 3A e —B o A
e A—-2B e AB e BA
[2 -3 5 —2 -1 5 2 10
L= 4],3_[4 8} 2.A_[_36],B_[_7 1}
-1 3 7 0 8 2 4 -1 3 =5
3A__ 5 2]’3_[—3 1 4] 4A_[6 8}’3_[ 7 -9 11]
[ 7 1 -2
5. A= |8 |,B=[1 2 3] 6. A=| -3 4|,B=[-5 1 8]
| 9 5 —6
[ 2 -3 5 1 2 1
7. A= 3 1 =2 |,B=|17 33 19
| -7 1 -1 10 19 11
In Exercises 8 - 21, use the matrices
(12 [ o -3 [0 =% o0
-y i el ] e[ s
7 —13 1 2 3
D=| -3 0| E=|0 4 -9
6 8 0 0 -5
to compute the following or state that the indicated operation is undefined.
8. 7B —4A 9. AB 10. BA
11. E+ D 12. ED 13. CD +21,A
14. A—4l, 15. A% — B? 16. (A+ B)(A— B)
17. A2 —5A -2, 18. E? +5F — 3613 19. EDC
20. CDFE 21. ABCEDI,
a b ¢ 0 1 5 0 1 =2
praass? c] 60 0] Bo3 0] me[l 2]

Compute F, A, E,A and E;A. What effect did each of the E; matrices have on the rows of
A? Create E, so that its effect on A is to multiply the bottom row by —6. How would you
extend this idea to matrices with more than two rows?
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In Exercises 23 - 29, consider the following scenario. In the small village of Pedimaxus in the
country of Sasquatchia, all 150 residents get one of the two local newspapers. Market research
has shown that in any given week, 90% of those who subscribe to the Pedimaxus Tribune want to
keep getting it, but 10% want to switch to the Sasquatchia Picayune. Of those who receive the
Picayune, 80% want to continue with it and 20% want switch to the Tribune. We can express this
situation using matrices. Specifically, let X be the ‘state matrix’ given by

T
=[]
where T is the number of people who get the Tribune and P is the number of people who get the
Picayune in a given week. Let @ be the ‘transition matrix’ given by

o [ 090 0.20
[ 0.10 080

such that QX will be the state matrix for the next week.

23. Let’s assume that when Pedimaxus was founded, all 150 residents got the Tribune. (Let’s
call this Week 0.) This would mean

[

Since 10% of that 150 want to switch to the Picayune, we should have that for Week 1, 135
people get the Tribune and 15 people get the Picayune. Show that QX in this situation is

indeed

135
=[]

24. Assuming that the percentages stay the same, we can get to the subscription numbers for
Week 2 by computing @?X. How many people get each paper in Week 27

25. Explain why the transition matrix does what we want it to do.

26. If the conditions do not change from week to week, then ) remains the same and we have
what’s known as a Stochastic Process'’ because Week n’s numbers are found by computing
Q" X. Choose a few values of n and, with the help of your classmates and calculator, find out
how many people get each paper for that week. You should start to see a pattern as n — oo.

27. If you didn’t see the pattern, we’ll help you out. Let

100 ]

XS:{ 50

Show that QX = X This is called the steady state because the number of people who get
each paper didn’t change for the next week. Show that Q"X — X as n — oc.

100\fore specifically, we have a Markov Chain, which is a special type of stochastic process.
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28.

29.

30.

31.

Now let

n
Il
—

[SUERUN)

Wl win
| I |

Show that Q™ — S as n — oo.

Show that SY = X, for any matrix Y of the form

_ Y
Y_[150—y]

This means that no matter how the distribution starts in Pedimaxus, if ) is applied often
enough, we always end up with 100 people getting the Tribune and 50 people getting the
Picayune.

Let z = a + bi and w = ¢ + di be arbitrary complex numbers. Associate z and w with the

matrices
a b c d
Z—[_b a} andW—[_d c}

Show that complex number addition, subtraction and multiplication are mirrored by the
associated matriz arithmetic. That is, show that Z + W, Z — W and ZW produce matrices
which can be associated with the complex numbers z 4+ w, z — w and zw, respectively.

Let

1 2 0 -3
A—[34]and3—[_5 2}

Compare (A + B)? to A2 + 2AB + B?. Discuss with your classmates what constraints must
be placed on two arbitrary matrices A and B so that both (A+ B)? and A2 +2AB + B? exist.
When will (A+ B)? = A2+ 2AB + B%? In general, what is the correct formula for (A + B)??

In Exercises 32 - 36, consider the following definitions. A square matrix is said to be an upper
triangular matrix if all of its entries below the main diagonal are zero and it is said to be a lower
triangular matrix if all of its entries above the main diagonal are zero. For example,

1 2 3
E=10 4 -9
0 0 -5

from Exercises 8 - 21 above is an upper triangular matrix whereas

S

is a lower triangular matrix. (Zeros are allowed on the main diagonal.) Discuss the following

questions with your classmates.
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32. Give an example of a matrix which is neither upper triangular nor lower triangular.
33. Is the product of two n X n upper triangular matrices always upper triangular?

34. Is the product of two n x n lower triangular matrices always lower triangular?

[21]

write A as LU where L is a lower triangular matrix and U is an upper triangular matrix?

35. Given the matrix

36. Are there any matrices which are simultaneously upper and lower triangular?
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3. ForA:[

4. ForA:[
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8.3.2 ANSWERS

2 -3
1 4}andB—[
6 -9
'3‘4_[3 12]
-8 1
oA—ZB—|:7 12]
-1 5
_3 6}and3—[
-3 15
°3A[—9 18}
-5 —15
oA—ZB—[ 1 4]
-1 3
5 2}andB—[
-3 9
'3A_[ 15 6]

e A — 2B is not defined

2 4
6 8

SR

18 24

e A — 2B is not defined

Janas=|

)
4

-1

7

2 10
7T 1

70 8
3 1 4

3 =5
-9 11

.—B:

o AB =

[ —37

| —48

[ -7
3

[ —16

29
1

| =7

[ 26

| 50

)

—28
30

—10
-1

-5
—24

0 -8
—1 -4

|

3 4
2 48

-3
9 -1

—-30 34
—54 58

)
1

|

|
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1 18

2 _

A_[G 13}
8 —23

BA_[lG 20]
—14 25

2 _

A[—15 21]
~32 70

BA_[ 4 —29}
16 3

2 _

A‘[ 5 19]

BA is not defined

AZ_[zs 40}

60 88

BA is not defined
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7
5. ForA= |8 |and B=[1 2 3]
9
21
e 3A=| 24 e B=[-1 -2 -3]
27
e A? is not defined e A — 2B is not defined
7 14 21
e AB=| 8 16 24 e BA = [50]
9 18 27
1 -2
6. Fr A=| -3 4 |andB=[ -5 1 8|
5 —6
3 -6
e3A=| -9 12 e —B=[5 -1 -8]
15 —18
e A? is not defined e A — 2B is not defined
e AB is not defined e BA = [ 32 —34 ]
2 -3 5 1 1
7. For A = 3 1 -2 |and B=| 17 33 19
-7 1 -1 10 19 11
6 —9 15 -1 -2 -1
e 3A = 9 3 —6 e —B=| —17 -33 -19
| —21 3 -3 —-10 -19 -11
[ —40 —4 11 0 -7 3
o AZ = 23 —10 15 e A—2B=| —-31 —-65 —40
| -4 21 36 =27 =37 =23
1 0 0 1 00
e AB=1]10 1 0 e BA=1]0 1 0
|0 0 1 0 0 1
[ -4 —29 -10 1
8. 7B—4A___47 9 9. AB_[_QO _1}
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10. BA = [ _? __1; ] 11. F + D is undefined
g 11
12. ED= | _118 _79 13. CD+2LA= | .
—30 —40 T
| 73 2 2 o | -8 16
14. A 412_[30] 15. A B_[% 3]
[ -7 3 ) [0 o
16. (A+B)(A—B)_[ 16 2} 17. A2 —5A 212_[0 0
3449 407
-30 20 -15 = &
18. B> +5E — 3613 = 0 0 —36 19. EDC = | %48 101
0 0 —36 —324 -35
90749
20. CDE is undefined 21. ABCEDI, = [ 156001
15
[d e f .
22. F1A = 0 b e FE, interchanged R1 and R2 of A.
E,A= 53 52 5; ] E, multiplied R1 of A by 5.
B A= 22 b- 22 °- 2; } E, replaced R1 in A with R1 — 2R2.

B |

1
0

o)

238 196
361

5

99

—648
—360

28867
5
47033

597
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8.4 SYSTEMS OF LINEAR EQUATIONS: MATRIX INVERSES

We concluded Section 8.3 by showing how we can rewrite a system of linear equations as the matrix
equation AX = B where A and B are known matrices and the solution matrix X of the equation
corresponds to the solution of the system. In this section, we develop the method for solving such
an equation. To that end, consider the system

20 — 3y = 16
3r+4y = 7

To write this as a matrix equation, we follow the procedure outlined on page 590. We find the
coefficient matrix A, the unknowns matrix X and constant matrix B to be

2 =3 x 16
SRS MR
In order to motivate how we solve a matrix equation like AX = B, we revisit solving a similar
equation involving real numbers. Consider the equation 3z = 5. To solve, we simply divide both
sides by 3 and obtain x = % How can we go about defining an analogous process for matrices?
To answer this question, we solve 3z = 5 again, but this time, we pay attention to the properties
of real numbers being used at each step. Recall that dividing by 3 is the same as multiplying by

L = 3-1 the so-called multiplicative inverse' of 3.

3
3r = 5
371(3z) = 37'(5) Multiply by the (multiplicative) inverse of 3
(371-3)z = 37(5) Associative property of multiplication
-z = 3745) Inverse property
r = 371(5) Multiplicative Identity

If we wish to check our answer, we substitute z = 371(5) into the original equation

3z = 5
3(371(5) < 5
(3 . 3_1) (5) Z 5 Associative property of multiplication
1-5 L ) Inverse property
5 £ 5 Multiplicative Identity

Thinking back to Theorem 8.5, we know that matrix multiplication enjoys both an associative
property and a multiplicative identity. What’s missing from the mix is a multiplicative inverse for
the coefficient matrix A. Assuming we can find such a beast, we can mimic our solution (and check)
to 3z = 5 as follows

!Every nonzero real number a has a multiplicative inverse, denoted a !, such that ¢ ! -a =a-a ' = 1.
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Solving AX = B Checking our answer

AX = B AX = B
ANAX) = A'B  A(AT'B) £ B
(A'A)X = A7'B (44 YB L B

LX = A7'B B LB

X = A'B v

B L B

The matrix A~! is read ‘A-inverse’ and we will define it formally later in the section. At this stage,
we have no idea if such a matrix A~! exists, but that won’t deter us from trying to find it.? We
want A~! to satisfy two equations, A~'A = I, and AA~! = I,, making A~! necessarily a 2 x 2
matrix.? Hence, we assume A~! has the form

Ailz Ty Ta
T3 Ty

for real numbers x,, x,, 5 and x,. For reasons which will become clear later, we focus our attention
on the equation AA~! = I,. We have

AAT = I
2 -3 T, To _ 1 0
3 4 Ty Ty - 0 1
2:(/‘1 - 3333 2.1/‘2 - 3.'];4 _ 1 0
3x, +4x; 3x, +4x, - 0 1
This gives rise to two more systems of equations
2371 - 3583 - 1 2x2 - 3‘/1;‘4 =
3$1 + 4.%'3 - O 31‘2 + 4$4 - 1

At this point, it may seem absurd to continue with this venture. After all, the intent was to solve
one system of equations, and in doing so, we have produced two more to solve. Remember, the
objective of this discussion is to develop a general method which, when used in the correct scenarios,
allows us to do far more than just solve a system of equations. If we set about to solve these systems
using augmented matrices using the techniques in Section 8.2, we see that not only do both systems
have the same coefficient matrix, this coefficient matrix is none other than the matrix A itself. (We
will come back to this observation in a moment.)

2Much like Carl’s quest to find Sasquatch.
3Since matrix multiplication isn’t necessarily commutative, at this stage, these are two different equations.
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2, —3x; = 1 Encode into a matrix 2 =31
3r,+4x; = 0 § 3 410
21’2 - 3$4 = 0 Encode into a matrix 2 =310
3x, +4x, = 1 3 411

To solve these two systems, we use Gauss-Jordan Elimination to put the augmented matrices into
reduced row echelon form. (We leave the details to the reader.) For the first system, we get

4
17
_3
17

which gives =z, = % and x; = —%. To solve the second system, we use the exact same row
operations, in the same order, to put its augmented matrix into reduced row echelon form (Think
about why that works.) and we obtain

2 =311 Gauss Jordan Elimination\ 10
3 410 0 1

|: 2 =31|0 :| Gauss Jordan Elimination [ 10

3 411 0 1
which means z, = % and z, = 1% Hence,

we[me]- 4t

We can check to see that A~! behaves as it should by computing AA~1

Sho s
| I

Sl Sl
e Ses

- 4 3
2 =3 1 17 1 0
. H i ]:[ }:M
|3 4 _% 117 0 1
As an added bonus,
T4 3
= 1 2 -3 1 0
| T H }:{ }:”
3 2 2
T & 3 4 0 1

We can now return to the problem at hand. From our discussion at the beginning of the section

on page 599, we know
16 | 5
7T | -2

so that our final solution to the system is (z,y) = (5, —2).

X=A"'B=

e Sfes

As we mentioned, the point of this exercise was not just to solve the system of linear equations, but
to develop a general method for finding A=!. We now take a step back and analyze the foregoing
discussion in a more general context. In solving for A~!, we used two augmented matrices, both of
which contained the same entries as A
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£ 34 - [
53R - [

We also note that the reduced row echelon forms of these augmented matrices can be written as

4
1 0 17 _ [2 I
0 1 —% s
1 0 % _ I, T,
01| & 4

where we have identified the entries to the left of the vertical bar as the identity I, and the entries
to the right of the vertical bar as the solutions to our systems. The long and short of the solution
process can be summarized as

i

T3

Lo
Ly
Since the row operations for both processes are the same, all of the arithmetic on the left hand side
of the vertical bar is identical in both problems. The only difference between the two processes is
what happens to the constants to the right of the vertical bar. As long as we keep these separated

into columns, we can combine our efforts into one ‘super-sized” augmented matrix and describe the
above process as

|: A (1) :| Gauss Jordan Elimination |: 12

0 Gauss Jordan Elimination
A ) I,

|: A (1] (1) :| Gauss Jordan Elimination |: ]2

Ty Ty
We have the identity matrix I, appearing as the right hand side of the first super-sized augmented
matrix and the left hand side of the second super-sized augmented matrix. To our surprise and

delight, the elements on the right hand side of the second super-sized augmented matrix are none
other than those which comprise A~!'. Hence, we have

[ A ‘ I, ] Gauss Jordan Elimination [ I, ‘ 4-1 ]

In other words, the process of finding A~! for a matrix A can be viewed as performing a series of
row operations which transform A into the identity matrix of the same dimension. We can view
this process as follows. In trying to find A~!, we are trying to ‘undo’ multiplication by the matrix
A. The identity matrix in the super-sized augmented matrix [A|I] keeps a running memory of all
of the moves required to ‘undo’ A. This results in exactly what we want, A~'. We are now ready
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to formalize and generalize the foregoing discussion. We begin with the formal definition of an
invertible matrix.

Definition 8.11. An n x n matrix A is said to be invertible if there exists a matrix A~!, read
‘A inverse’, such that A=1A = AA™1 =1,,.

Note that, as a consequence of our definition, invertible matrices are square, and as such, the
conditions in Definition 8.11 force the matrix A~! to be same dimensions as A, that is, n x n.
Since not all matrices are square, not all matrices are invertible. However, just because a matrix is
square doesn’t guarantee it is invertible. (See the exercises.) Our first result summarizes some of
the important characteristics of invertible matrices and their inverses.

Theorem 8.6. Suppose A is an n X n matrix.

1. If A is invertible then A~! is unique.
2. A is invertible if and only if AX = B has a unique solution for every n x r matrix B.

The proofs of the properties in Theorem 8.6 rely on a healthy mix of definition and matrix arith-
metic. To establish the first property, we assume that A is invertible and suppose the matrices B and
C act as inverses for A. That is, BA = AB = I, and CA = AC = I,,. We need to show that B and
C are, in fact, the same matrix. To see this, we note that B = I,,B = (CA)B = C(AB) = C1, = C.
Hence, any two matrices that act like A~™! are, in fact, the same matrix. To prove the second
property of Theorem 8.6, we note that if A is invertible then the discussion on page 599 shows
the solution to AX = B to be X = A7!B, and since A~! is unique, so is A~'B. Conversely, if
AX = B has a unique solution for every n X r matrix B, then, in particular, there is a unique
solution Xy to the equation AX = I,. The solution matrix X, is our candidate for A~'. We
have AXy = I,, by definition, but we need to also show XgA = I,. To that end, we note that
A(XpA) = (AXo) A = I,A = A. In other words, the matrix XpA is a solution to the equation
AX = A. Clearly, X = [, is also a solution to the equation AX = A, and since we are assuming ev-
ery such equation as a unique solution, we must have XoA = I,,. Hence, we have XgA = AXy = I,
so that Xg = A~! and A is invertible. The foregoing discussion justifies our quest to find A~! using
our super-sized augmented matrix approach

[ A ‘ I, ] Gauss Jordan Elimination> [ I, ‘ A-1 ]

We are, in essence, trying to find the unique solution to the equation AX = I, using row operations.

What does all of this mean for a system of linear equations? Theorem 8.6 tells us that if we write
the system in the form AX = B, then if the coefficient matrix A is invertible, there is only one
solution to the system — that is, if A is invertible, the system is consistent and independent.” We
also know that the process by which we find A~! is determined completely by A, and not by the

41f this proof sounds familiar, it should. See the discussion following Theorem 5.2 on page 380.

°It can be shown that a matrix is invertible if and only if when it serves as a coefficient matrix for a system of
equations, the system is always consistent independent. It amounts to the second property in Theorem 8.6 where
the matrices B are restricted to being n x 1 matrices. We note that, owing to how matrix multiplication is defined,
being able to find unique solutions to AX = B for n x 1 matrices B gives you the same statement about solving such
equations for n X r matrices — since we can find a unique solution to them one column at a time.
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constants in B. This answers the question as to why we would bother doing row operations on
a super-sized augmented matrix to find A~! instead of an ordinary augmented matrix to solve a
system; by finding A~! we have done all of the row operations we ever need to do, once and for all,
since we can quickly solve any equation AX = B using one multiplication, A~ B.

Example 8.4.1. Let A =

3
0
2

1
-1
1

2
5
4

1. Use row operations to find A~!. Check your answer by finding A='A and AA™!.

2. Use A™! to solve the following systems of equations

(a)

Solution.

3r +y+ 2z
-y + 5z
2r +y+4z

26
39
117

(b)

3r +y+ 2z
-y + 5z
2r +y+4z

()

3r +y+ 2z
—y + 5z
2r +y+4z

1. We begin with a super-sized augmented matrix and proceed with Gauss-Jordan elimination.

S O = o O = o o = N O = N O W

O =

1 2]1 0
1 5]0 1
1 410 0
1 2 1
3 3|3 0
1 5|0 1
1 4]0 0
12 1
3 3 3
-1 5| 0
18| 2
3 3 3
12 1
3 3 3
1 -5 0
18| 2
3 3 3
12 1
3 3 3
1 =5| 0
13 2
0 F1-3
12 1
3 3 3
1 =5, 0
0o 1|-3

— o o = O O

S = O
— O O

Replace R1
—_—

with 1 R1

Replace R3 with
_—>

|
[ N

—2R1+ R3

N =

S O =
W = W=

Replace R2

i

with (—1)R2

—iR2+R3

S O =

Replace R3 with
_—

1

0

W= O O O

)

- L

— o O — o O

g o o

with

Replace R3
e

, 0
2R3 0

Replace R1 with
—2R3+ R1

Replace R2 with
5R3 4+ R2

=~ orwino

W = W=

O O Wl
o = O

wWI00 T Lol

Wi O Wi

O =R O = o O

O =Wl

wloo Gl
W O Wi

|
w UTwei

O =Wl

= Oorwino w\»—t

[
O = Wi

= o O

o O Wi

[ro oWl

—
w

17
39
10

13

0
0
1
0 0
10
1
5 1
0 0
10
1 3
13 13
_2 _2
39 13
8 15
13 13
1l 3
13 13

13
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1 17 2
3 0 35 —39
10 8
2 1
9
13
-1 _ 10
We find A= = T
2
13
AT A =
and
3
AA =10

Ut
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9 2 7
Repl R1 witl Lo 13 BB
eplace with 10 8 15
% — —_— =
1 010 13 13 13
—1R2+R1 00 1 o 1 3
13 13 13
. To check our answer, we compute
7
. 1 2 00
15 _ _
3 —1 = = Ig v
3
5 1 4 0
9 2 7
13 13 00
10 8 15 | _ _
2 1 3
“i3 13 13 0

2. Each of the systems in this part has A as its coefficient matrix. The only difference between
the systems is the constants which is the matrix B in the associated matrix equation AX = B.
We solve each of them using the formula X = A~!B.

(a) X=A"1B=
(b) X=A"'B=
(c) X=A"1B=

S Gls Sl Sy Zls le e Sl e

==

==

|
Gl= Gl G &l Sloe v Gl Eloo Gl

26

&l

o Sl &fer

—
w

Sl Gl Sl Gl Blo Sl Slee &

Gl 5ls &le

. We find (%,

. Our solution is (—39,91, 26).

_10
13°

)t

T 13

O

In Example 8.4.1, we see that finding one inverse matrix can enable us to solve an entire family
of systems of linear equations. There are many examples of where this comes in handy ‘in the
wild’, and we chose our example for this section from the field of electronics. We also take this
opportunity to introduce the student to how we can compute inverse matrices using the calculator.

5Note that the solution is the first column of the A~!. The reader is encouraged to meditate on this ‘coincidence’.
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Example 8.4.2. Consider the circuit diagram below.” We have two batteries with source voltages
VB, and VB,, measured in volts V', along with six resistors with resistances R, through R,;, measured
in kiloohms, k€). Using Ohm’s Law and Kirchhoff’s Voltage Law, we can relate the voltage supplied
to the circuit by the two batteries to the voltage drops across the six resistors in order to find the
four ‘mesh’ currents: 4, iy, i3 and i,, measured in milliamps, mA. If we think of electrons flowing
through the circuit, we can think of the voltage sources as providing the ‘push’ which makes the
electrons move, the resistors as obstacles for the electrons to overcome, and the mesh current as a
net rate of flow of electrons around the indicated loops.

Rs
M\
( i4 ]
Ry Ry Rs
MWV MWV AMAN——+
= | i |RZ o | R Z is | = VB,

The system of linear equations associated with this circuit is

(R, + Rs) i, — Rgi, — Ryiy, = VB,
—Ryiy + (Ry+ Rs + Ry) iy — Ryis — Ryiy, = 0
_R4i2 + (R4 + RG) Z‘3 - R6i4 - _VBQ
—Ryiy — Ryis — Reis + (Ri+ Ry + Ry + Rs)is = 0

1. Assuming the resistances are all 1€, find the mesh currents if the battery voltages are

VB, = 10V and VB, = 5V
‘Bl - 10V and ‘BQ - OV

2. Assuming VB, = 10V and VB, = 5V, find the possible combinations of resistances which
would yield the mesh currents you found in 1(a).

"The authors wish to thank Don Anthan of Lakeland Community College for the design of this example.
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Solution.

1. Substituting the resistance values into our system of equations, we get

20, —iy—1, = VB,
-, +3,—i3—1, = 0
—ly + 213 — 1y = _VBQ
—, —ty—t3+4i, = 0

This corresponds to the matrix equation AX = B where

2 -1 0 -1 i VB,
—1 3 -1 -1 9 0
A=l 0 1 2 1| X7 | BT
-1 -1 -1 4 Ty 0
When we input the matrix A into the calculator, we find
GCIR CIR
[[1.625 1.25 1.. 1.25 1.125 1]
[1.252 1.5 1.. 1.2 1.25 1]
[1.125 1.23 1.. 1.23 1.6252 1]
[1 1 1 .. 1 1 111
|
1.625 1.25 1.125 1
. _ 1.25 1.5 1.25 1
from which we have A=! = 1125 125 1625 1
1 1 1 1

To solve the four systems given to us, we find X = A~'B where the value of B is determined

by the given values of VB, and VB,

10

10 0 10
0 0 0
o 1@ B=| | t@ B=]
0 0 0

(a) For VB, = 10V and VB, = 5V, the calculator gives i, = 10.625 mA, i, = 6.25 mA,
i3 = 3.125 mA, and i, =5 mA. We include a calculator screenshot below for this part
(and this part only!) for reference.
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[AI-1[E]
[[18.625]
[E.23 ]
[3.125 ]
[3 11

(b) By keeping VB, = 10V and setting VB, = 0V, we are removing the effect of the second
battery. We get i, = 16.25 mA, i, = 12.5 mA, i3 = 11.25 mA, and i, = 10 mA.

(c) Part (c) is a symmetric situation to part (b) in so much as we are zeroing out VB, and
making VB, = 10. We find i, = —11.25 mA, i, = —12.5 mA, i; = —16.25 mA, and
i, = —10 mA, where the negatives indicate that the current is flowing in the opposite
direction as is indicated on the diagram. The reader is encouraged to study the symmetry
here, and if need be, hold up a mirror to the diagram to literally ‘see’ what is happening.

(d) For VB, = 10V and VB, = 10V, we get i, = 5 mA, i, = 0 mA, i3 = —5 mA, and
i, = 0 mA. The mesh currents i, and i, being zero is a consequence of both batteries

‘pushing’ in equal but opposite directions, causing the net flow of electrons in these two
regions to cancel out.

2. We now turn the tables and are given VB, = 10V, VB, =5V, i, = 10.625 mA, i, = 6.25 mA,
i3 = 3.125 mA and i, = 5 mA and our unknowns are the resistance values. Rewriting our
system of equations, we get

9.625R, +4.375R; = 10

1.25R, —4.375R; +3.125R, = 0
—3.125R, — 1.875Rs = -5

—5.625R, — 1.25R, +5R; +1.875Rs = 0

The coefficient matrix for this system is 4 x 6 (4 equations with 6 unknowns) and is therefore
not invertible. We do know, however, this system is consistent, since setting all the resis-
tance values equal to 1 corresponds to our situation in problem la. This means we have an
underdetermined consistent system which is necessarily dependent. To solve this system, we
encode it into an augmented matrix

5.25 0 4.37 0 0 0| 10

0 125 —4.375  3.125 0 0 O

0 0 0 —-3.125 0 —1.875| -5
—5.625 —1.25 0 0 5 187 | 0

and use the calculator to write in reduced row echelon form
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1 0 07 0 0 017
0 1 =35 0 0 —15|—4
0 0 0 1 0 06]1.6
0 0 0 0 1 0| 1
Decoding this system from the matrix, we get
R, = 1

We have can solve for R,, R,, R, and R leaving R; and R as free variables. Labeling
R, = s and Ry = t, we have R, = —0.7s + 1.7, R, = 3.5s + 1.5t — 4, R, = —0.6t + 1.6
and R; = 1. Since resistance values are always positive, we need to restrict our values of
s and t. We know R; = s > 0 and when we combine that with R, = —0.7s + 1.7 > 0,
we get 0 < s < 1—76. Similarly, R = t > 0 and with R, = —0.6t + 1.6 > 0, we find
0 <t< %. In order visualize the inequality R, = 3.5s + 1.5t — 4 > 0, we graph the
line 3.55 + 1.5t — 4 = 0 on the st-plane and shade accordingly.® Imposing the additional
conditions 0 < s < 1—76 and 0 <t < %, we find our values of s and ¢ restricted to the region
depicted on the right. Using the roster method, the values of s and t are pulled from the region
{(s,t) 0<s< 1—76, 0<t< %, 3.55+ 1.5t — 4 > O}. The reader is encouraged to check that
the solution presented in 1(a), namely all resistance values equal to 1, corresponds to a pair

(s,t) in the region.

S S
A
|
|
3+ 3T .
| _ 16
= "3 jpanaaar 0= ¥
RN S < |
\\ \\ I
THo e |
RS " , | ,
-2 -1 1 2 <4 ¢ -2 -1 4 1 2 :\\\4 t
-1 \\* 71% ' \\;
| _8
| t73

The region where 3.5s + 1.5t —4 >0 The region for our parameters s and t.

8See Section 2.4 for a review of this procedure.



8.4 SYSTEMS OF LINEAR EQUATIONS: MATRIX INVERSES 609

8.4.1 EXERCISES

In Exercises 1 - 8, find the inverse of the matrix or state that the matrix is not invertible.

12 12 -7
an e 2po] 2]
6 15 (2 -1
3‘0_[14 35] L D=1 —9]
[ 3 0 4 (4 6 -3
5. E=| 2 -1 3 6. F=|3 4 -3
-3 2 -5 1 2 6
1 2 3 1 0 -3 0
7.G=12 3 11 2 -2 8 7
3 419 SH=1 5 0 16 0
1 0 41

In Exercises 9 - 11, use one matrix inverse to solve the following systems of linear equations.

9 3r+Ty = 26 10 3r+T7y = 0 1 x+7Ty = =7
"l bx+12y = 39 T b+ 12y = —1 "l bx+12y = 5

In Exercises 12 - 14, use the inverse of E from Exercise 5 above to solve the following systems of
linear equations.

3r+4z = 1 3r+4z = 0 3r+4z = 0
12. 2¢—y+32z = 0 13. 20 —y+32z = 1 14. 20 —y+3z = 0
—3z+2y—52 = 0 —3r+2y—52 = 0 —3r+2y—5z =1

15. This exercise is a continuation of Example 8.3.3 in Section 8.3 and gives another application
of matrix inverses. Recall that given the position matrix P for a point in the plane, the
matrix RP corresponds to a point rotated 45° counterclockwise from P where

V2 V2
) D)
= V2 ﬁ]

2 2

(a) Find R7L.

(b) If RP rotates a point counterclockwise 45°, what should R~!P do? Check your answer
by finding R~ P for various points on the coordinate axes and the lines y = 4.

(c) Find R~ P where P corresponds to a generic point P(z,y). Verify that this takes points
on the curve y = % to points on the curve z? — y? = 4.
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16.

17.
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A Sasquatch’s diet consists of three primary foods: Ippizuti Fish, Misty Mushrooms, and Sun
Berries. Each serving of Ippizuti Fish is 500 calories, contains 40 grams of protein, and has
no Vitamin X. Each serving of Misty Mushrooms is 50 calories, contains 1 gram of protein,
and 5 milligrams of Vitamin X. Finally, each serving of Sun Berries is 80 calories, contains
no protein, but has 15 milligrams of Vitamin X.”

(a) If an adult male Sasquatch requires 3200 calories, 130 grams of protein, and 275 mil-
ligrams of Vitamin X daily, use a matrix inverse to find how many servings each of
Ippizuti Fish, Misty Mushrooms, and Sun Berries he needs to eat each day.

(b) An adult female Sasquatch requires 3100 calories, 120 grams of protein, and 300 mil-
ligrams of Vitamin X daily. Use the matrix inverse you found in part (a) to find how
many servings each of Ippizuti Fish, Misty Mushrooms, and Sun Berries she needs to
eat each day.

(¢) An adolescent Sasquatch requires 5000 calories, 400 grams of protein daily, but no Vita-
min X daily.! Use the matrix inverse you found in part (a) to find how many servings
each of Ippizuti Fish, Misty Mushrooms, and Sun Berries she needs to eat each day.

Matrices can be used in cryptography. Suppose we wish to encode the message ‘BIGFOOT
LIVES’. We start by assigning a number to each letter of the alphabet, say A =1, B =2 and
so on. We reserve 0 to act as a space. Hence, our message ‘BIGFOOT LIVES’ corresponds
to the string of numbers ‘2, 9, 7, 6, 15, 15, 20, 0, 12, 9, 22, 5, 19.” To encode this message,
we use an invertible matrix. Any invertible matrix will do, but for this exercise, we choose

2 -3 5
A= 3 1 -2
-7 1 -1

Since A is 3 x 3 matrix, we encode our message string into a matrix M with 3 rows. To do
this, we take the first three numbers, 2 9 7, and make them our first column, the next three
numbers, 6 15 15, and make them our second column, and so on. We put 0’s to round out
the matrix.

2 6 20 9 19
M=19 15 0 22 0
7 15 12 5 O

To encode the message, we find the product AM

2 -3 5 2 6 20 9 19 12 42 100 -23 38
AM = 3 1 =2 9 15 0 22 0| = 1 3 36 39 o7
-7 1 -1 7 15 12 5 0 —12 —42 —-152 —46 -—-133

9Misty Mushrooms and Sun Berries are the only known fictional sources of Vitamin X.
10Vitamin X is needed to sustain Sasquatch longevity only.
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18.

19.

So our coded message is ‘12, 1, —12, 42, 3, —42, 100, 36, —152, —23, 39, —46, 38, 57, —133.’
To decode this message, we start with this string of numbers, construct a message matrix as
we did earlier (we should get the matrix AM again) and then multiply by A~!.

(a) Find A~L.
(b) Use A~! to decode the message and check this method actually works.
(¢) Decode the message ‘14, 37, —76, 128, 21, —151, 31, 65, —140’

)

(d) Choose another invertible matrix and encode and decode your own messages.

Using the matrices A from Exercise 1, B from Exercise 2 and D from Exercise 4, show
AB =D and D7! = B~1A~1. That is, show that (AB)~! = B~1A~L

Let M and N be invertible n x n matrices. Show that (MN)~! = N~'M~! and compare
your work to Exercise 31 in Section 5.2.
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8.4.2 ANSWERS

2 1 L [3 7
-1 _ —
= AN
2 2
ro _1
3. C'is not invertible 4. D71 = % _i }
1 8 4 [ 5 5 3
-1 = -1 _ 7 9 1
5. Bl = 1 -3 -1 6. F~1 = r -2 1
1 -6 -3 _1 1 1
G 6 6
16 0 0
—9p —L1 _35 7
7. G is not invertible 8 H- I = 2 2 2
5 0 1 0
—-36 0o -7 1

The coefficient matrix is B~! from Exercise 2 above so the inverse we need is (B~!)~! = B.

12 -7 ][ 26 39
9. | 5 3| _39]—[_13] Sox =39 and y = —13.
12 =717 0 7
10. 5 3 __1]—[_3] Sox=7andy=-3.
12 -7 ][ -7 —119
11. 5 3| 5]—[ 50} So x = —119 and y = 50.
3 0 4 -1 8 4
The coefficient matrix is £ = 2 —1 3 | from Exercise 5, so B~ = 1 -3 -1
-3 2 =5 1 -6 -3
[ -1 8 47 [ 1] [ 1]
12. 1 -3 -1 0= 1 Sox=-1,y=1and z = 1.
| 1 6 -3 ][0 ] 1
[ -1 8 47[0] [ 8]
13. 1 -3 -1 11 =1-3 Sox=8,y=—-3 and z = —6.
1 -6 -3 ][0 ] | —6 |
[ -1 8 47[0] [ 4]
14. 1 -3 -1 0|l=| 1| Sox=4,y=—1and z= —3.
1 6 -3 ] [ 1] | =3 ]
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16. (a) The adult male Sasquatch needs: 3 servings of Ippizuti Fish, 10 servings of Misty Mush-
rooms, and 15 servings of Sun Berries daily.

(b) The adult female Sasquatch needs: 3 servings of Ippizuti Fish and 20 servings of Sun
Berries daily. (No Misty Mushrooms are needed!)

(c) The adolescent Sasquatch requires 10 servings of Ippizuti Fish daily. (No Misty Mush-
rooms or Sun Berries are needed!)

1 2 1
17. (a) A= 17 33 19
10 19 11
1 2 1 12 42 100 -23 38 2 6 20 9 19
(b) | 17 33 19 1 3 3 39 57 |=|9 15 02 0| v
10 19 11 | | =12 —42 —152 —46 —133 715 12 5 0

(¢) ‘LOGS RULE’
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8.5 DETERMINANTS AND CRAMER’S RULE

8.5.1 DEFINITION AND PROPERTIES OF THE DETERMINANT

In this section we assign to each square matrix A a real number, called the determinant of A,
which will eventually lead us to yet another technique for solving consistent independent systems
of linear equations. The determinant is defined recursively, that is, we define it for 1 x 1 matrices
and give a rule by which we can reduce determinants of n x n matrices to a sum of determinants
of (n—1) x (n — 1) matrices.! This means we will be able to evaluate the determinant of a 2 x 2
matrix as a sum of the determinants of 1 x 1 matrices; the determinant of a 3 x 3 matrix as a sum
of the determinants of 2 x 2 matrices, and so forth. To explain how we will take an n x n matrix
and distill from it an (n — 1) x (n — 1), we use the following notation.

Definition 8.12. Given an n x n matrix A where n > 1, the matrix A;; is the (n —1) x (n —1)
matrix formed by deleting the ith row of A and the jth column of A.

For example, using the matrix A below, we find the matrix A,; by deleting the second row and
third column of A.

3 1
A=10 -1
2 1 21

= Ot N

Delete R2 and C3 31
A23 -

We are now in the position to define the determinant of a matrix.

Definition 8.13. Given an n x n matrix A the determinant of A, denoted det(A), is defined
as follows

e If n =1, then A = [ay;] and det(A) = det ([a1]) = ay;.

o If n > 1, then A = [a;j] and

nxn

det(A) = det ([aij] = qa,; det (Ay;) —appdet (Ay) +— ... + (—1)1+”am det (Ayp)

n><n)

There are two commonly used notations for the determinant of a matrix A: ‘det(A)’ and ‘|AJ’
We have chosen to use the notation det(A) as opposed to |A| because we find that the latter is
often confused with absolute value, especially in the context of a 1 x 1 matrix. In the expansion
ay det (Ayy) —a, det (Ap)+— ...+ (=1)""ay, det (A,,), the notation ‘“+—...+(—1)'""a,,,’” means
that the signs alternate and the final sign is dictated by the sign of the quantity (—1)'*". Since
the entries ay,, a;, and so forth up through a,, comprise the first row of A, we say we are finding
the determinant of A by ‘expanding along the first row’. Later in the section, we will develop a
formula for det(A) which allows us to find it by expanding along any row.

Applying Definition 8.13 to the matrix A = [ ;L _i) } we get

"'We will talk more about the term ‘recursively’ in Section 9.1.
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det(A) = det([;l _‘I’ D
— 4det (An) — (=3) det (Ay)
= 4ddet([1)) + 3 det(]2))
= 4(1)+3(2)
= 10
For a generic 2 x 2 matrix A = { ‘C" Z ] we get
det(4) = det([z ZD

This formula is worth remembering

adet ([d]) — bdet ([¢])

= ad—bc

615

Equation 8.1. For a 2 x 2 matrix,

a b
det([ e d ]) = ad — be
3 1 2
Applying Definition 8.13 to the 3 x 3 matrix A= | 0 —1 5 | we obtain
2 1 4

3
det(A) = 0
2

1

1

2
5
4

: mq

= —1)(4)

I
/\
@
\_/
/\

= —13

(5)(1)
10) +2

0 5
2 4

1)) meel(e 1) e (]

2

—1

1

)

)( — ((0)(4) = (5)(2)) +2((0)(1) = (=1)(2))

To evaluate the determinant of a 4 x 4 matrix, we would have to evaluate the determinants of
four 3 x 3 matrices, each of which involves the finding the determinants of three 2 x 2 matrices.
As you can see, our method of evaluating determinants quickly gets out of hand and many of you
may be reaching for the calculator. There is some mathematical machinery which can assist us in
calculating determinants and we present that here. Before we state the theorem, we need some

more terminology.
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Definition 8.14. Let A be an n x n matrix and A;; be defined as in Definition 8.12. The 23
minor of A, denoted M;; is defined by M;; = det (A;j). The ¢j cofactor of A, denoted Cj; is
defined by Cij = (—1)i+jMij = (—1)i+j det (AU)

We note that in Definition 8.13, the sum

ayy det (Ay,) — aypdet (Ay) +— ..o+ (—1)1+"am det (Ayp)

can be rewritten as

an(—l)1Jr1 det (Ay) + CL12(—1)1+2 det (Ay) + ...+ am(—l)H” det (Ayp)

which, in the language of cofactors is

a,C1y + a.Cs + ...+ a1,Cin

We are now ready to state our main theorem concerning determinants.

Theorem 8.7. Properties of the Determinant: Let A = [a;;]

nxn'

e We may find the determinant by expanding along any row. That is, for any 1 < k < n,

det(A) = a1 Chy + apsCro + ... + apnClin
e If A’ is the matrix obtained from A by:
— interchanging any two rows, then det(A’) = — det(A).

— replacing a row with a nonzero multiple (say ¢) of itself, then det(A’) = cdet(A)
— replacing a row with itself plus a multiple of another row, then det(A’) = det(A)

e If A has two identical rows, or a row consisting of all 0’s, then det(A) = 0.

e If A is upper or lower triangular,” then det(A) is the product of the entries on the main
diagonal.®

e If B is an n x n matrix, then det(AB) = det(A) det(B).

e det (A™) = det(A)™ for all natural numbers n.

1
det(A)

e A is invertible if and only if det(A) # 0. In this case, det (A™1) =

“See Exercise 8.3.1 in 8.3.
¥See page 585 in Section 8.3.

Unfortunately, while we can easily demonstrate the results in Theorem 8.7, the proofs of most of
these properties are beyond the scope of this text. We could prove these properties for generic 2 x 2
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or even 3 X 3 matrices by brute force computation, but this manner of proof belies the elegance and
symmetry of the determinant. We will prove what few properties we can after we have developed
some more tools such as the Principle of Mathematical Induction in Section 9.3.> For the moment,
let us demonstrate some of the properties listed in Theorem 8.7 on the matrix A below. (Others
will be discussed in the Exercises.)

3 1 2
A=1]10 -1 5
2 1 4

We found det(A) = —13 by expanding along the first row. To take advantage of the 0 in the second
row, we use Theorem 8.7to find det(A) = —13 by expanding along that row.

3 1 2
det 0 _]. 5 == 0021 + (*1)022 + 5023
2 1 4

= (=1)(=1)**2det (As) + 5(—1)2T3 det (A,)

- caa([33]) s ([31])

= —((3)4) —(2)(2) - 5(3)(1) — (2)(1))
= —8-5
~13 v

In general, the sign of (—1)"*/ in front of the minor in the expansion of the determinant follows
an alternating pattern. Below is the pattern for 2 x 2, 3 x 3 and 4 x 4 matrices, and it extends
naturally to higher dimensions.

+ - + -
+ - " i -+ - +
+ - + -

+ -+

The reader is cautioned, however, against reading too much into these sign patterns. In the example
above, we expanded the 3 x 3 matrix A by its second row and the term which corresponds to the
second entry ended up being negative even though the sign attached to the minor is (+). These
signs represent only the signs of the (—1)**7 in the formula; the sign of the corresponding entry as
well as the minor itself determine the ultimate sign of the term in the expansion of the determinant.

To illustrate some of the other properties in Theorem 8.7, we use row operations to transform our
3 x 3 matrix A into an upper triangular matrix, keeping track of the row operations, and labeling

2For a very elegant treatment, take a course in Linear Algebra. There, you will most likely see the treatment of
determinants logically reversed than what is presented here. Specifically, the determinant is defined as a function
which takes a square matrix to a real number and satisfies some of the properties in Theorem 8.7. From that function,
a formula for the determinant is developed.
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each successive matrix.?

301 31 2 . 3 1 2

0 —1 5 Replace R3 0 —1 5 Replace R3 with 0 —1 5

9 1 4 with —2R1+ R3 0 % % L1R2+ R3 0 0 1733
A B C

Theorem 8.7 guarantees us that det(A) = det(B) = det(C) since we are replacing a row with
itself plus a multiple of another row moving from one matrix to the next. Furthermore, since
C' is upper triangular, det(C) is the product of the entries on the main diagonal, in this case
det(C) = (3)(—1) (%) = —13. This demonstrates the utility of using row operations to assist in
calculating determinants. This also sheds some light on the connection between a determinant and
invertibility. Recall from Section 8.4 that in order to find A~!, we attempt to transform A to I,
using row operations

[ A ‘ I, ] Gauss Jordan Elimination [ I, ‘ A-1 ]

As we apply our allowable row operations on A to put it into reduced row echelon form, the
determinant of the intermediate matrices can vary from the determinant of A by at most a nonzero
multiple. This means that if det(A) # 0, then the determinant of A’s reduced row echelon form
must also be nonzero, which, according to Definition 8.4 means that all the main diagonal entries
on A’s reduced row echelon form must be 1. That is, A’s reduced row echelon form is I,,, and A is
invertible. Conversely, if A is invertible, then A can be transformed into I, using row operations.
Since det (I,,) = 1 # 0, our same logic implies det(A) # 0. Basically, we have established that the
determinant determines whether or not the matrix A is invertible.*

It is worth noting that when we first introduced the notion of a matrix inverse, it was in the context
of solving a linear matrix equation. In effect, we were trying to ‘divide’ both sides of the matrix
equation AX = B by the matrix A. Just like we cannot divide a real number by 0, Theorem 8.7
tells us we cannot ‘divide’ by a matrix whose determinant is 0. We also know that if the coefficient
matrix of a system of linear equations is invertible, then system is consistent and independent. It
follows, then, that if the determinant of said coefficient is not zero, the system is consistent and
independent.

8.5.2 CRAMER’S RULE AND MATRIX ADJOINTS

In this section, we introduce a theorem which enables us to solve a system of linear equations by
means of determinants only. As usual, the theorem is stated in full generality, using numbered
unknowns x, x,, etc., instead of the more familiar letters x, y, z, etc. The proof of the general
case is best left to a course in Linear Algebra.

3Essentially, we follow the Gauss Jordan algorithm but we don’t care about getting leading 1’s.
“In Section 8.5.2, we learn determinants (specifically cofactors) are deeply connected with the inverse of a matrix.
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Theorem 8.8. Cramer’s Rule: Suppose AX = B is the matrix form of a system of n linear
equations in n unknowns where A is the coefficient matrix, X is the unknowns matrix, and B is
the constant matrix. If det(A) # 0, then the corresponding system is consistent and independent

and the solution for unknowns x,, x,, ...x, is given by:
det (A])
;= ———==,
det(A)

where A; is the matrix A whose jth column has been replaced by the constants in B.

In words, Cramer’s Rule tells us we can solve for each unknown, one at a time, by finding the ratio
of the determinant of A; to that of the determinant of the coefficient matrix. The matrix A; is
found by replacing the column in the coefficient matrix which holds the coefficients of x; with the
constants of the system. The following example fleshes out this method.

Example 8.5.1. Use Cramer’s Rule to solve for the indicated unknowns.

21'1 - 31‘2 -
1. Solve { br, L, = 2 for x, and z,
2r —-3y+z2 = -1
2. Solve r—y+z = 1 forz.
3r—4z = 0
Solution.

1. Writing this system in matrix form, we find

EEIERE RS E)

To find the matrix A;, we remove the column of the coefficient matrix A which holds the
coefficients of z; and replace it with the corresponding entries in B. Likewise, we replace the
column of A which corresponds to the coefficients of x, with the constants to form the matrix

A,. This yields
4 -3 2 4
S I B
Computing determinants, we get det(A) = 17, det (A,) = —2 and det (A,) = —24, so that

- det (A;) _ 2 - — det (A,) _ 24

det(A) 17 det(A) 17

The reader can check that the solution to the system is (—1%, —%).
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2. To use Cramer’s Rule to find z, we identify x5 as z. We have

2 =3 1 x -1 2 -3 -1
A=1]1 -1 1 X=1uy B = 1 A;=A,=| 1 -1 1
3 0 —4 z 0 3 0 0

Expanding both det(A) and det (A,) along the third rows (to take advantage of the 0’s) gives

Cdet(A)) 126

T det(A)  —-10 5

The reader is encouraged to solve this system for x and y similarly and check the answer. [

Our last application of determinants is to develop an alternative method for finding the inverse of
a matrix.” Let us consider the 3 x 3 matrix A which we so extensively studied in Section 8.5.1

3 1 2
A=|0 -1 )
2 1 4

We found through a variety of methods that det(A) = —13. To our surprise and delight, its inverse
below has a remarkable number of 13’s in the denominators of its entries. This is no coincidence.

9 2 7
13 m 13

-1 _ | 10 _38 15
AT = 13 3 13
_2 L 3

13 13 13

Recall that to find A~!, we are essentially solving the matrix equation AX = I, where X = [Ti5]55
is a 3 X 3 matrix. Because of how matrix multiplication is defined, the first column of I is the
product of A with the first column of X, the second column of I; is the product of A with the
second column of X and the third column of I; is the product of A with the third column of X. In

other words, we are solving three equations®
T11 1 T2 0 L3 0
A To1 - 0 A Too - ]. A Tog - 0
T31 0 L32 0 L33 1

We can solve each of these systems using Cramer’s Rule. Focusing on the first system, we have

1 1 2 31 2 3 1 1
A=]10 -1 5 A, =10 0 5 A; =10 -1
0o 1 4 2 0 4 2 1 0

SWe are developing a method in the forthcoming discussion. As with the discussion in Section 8.4 when we
developed the first algorithm to find matrix inverses, we ask that you indulge us.
5The reader is encouraged to stop and think this through.
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If we expand det (A,) along the first row, we get

det (4,) = det([_i ZD—th<[8 i])”det([g _”>
()

Amazingly, this is none other than the C}, cofactor of A. The reader is invited to check this, as
well as the claims that det (4,) = Oy, and det (4;) = Cy5.7 (To see this, though it seems unnatural
to do so, expand along the first row.) Cramer’s Rule tells us

x _ det (Al) _ Cll x _ det (AQ) _ 012 x — det (A3) — 013
U det(A) T det(A) T det(A)  det(A)” T det(A)  det(A)

So the first column of the inverse matrix X is:

Cll
det(A)
in B o B 1 gu
21 - - 12
o, det(A) det(A) o
013
L det(A)

Notice the reversal of the subscripts going from the unknown to the corresponding cofactor of A.
This trend continues and we get

T2 1 021 T3 1 031
La2 = Ca Ta3 = Cs,
det(A det(A
HED) ¢ ( ) Cas L33 ¢ ( ) Css

Putting all of these together, we have obtained a new and surprising formula for A~!, namely

) 1 Cl 1 021 031
= C12 022 C32
et | ¢, c, o

To see that this does indeed yield A~!, we find all of the cofactors of A

Cu - _97 021 = _27 031 - 7
012 - ].0, 022 - 8, 032 - _].5
C'13 = 27 CQS = _17 C(33 = -3

And, as promised,

"In a solid Linear Algebra course you will learn that the properties in Theorem 8.7 hold equally well if the word
‘row’ is replaced by the word ‘column’. We’re not going to get into column operations in this text, but they do make
some of what we’re trying to say easier to follow.
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9 2 7

1 Chn Cun Cy 1 -9 -2 7 13 13 13

= det(A) Cr, Cp Cpn | = 13 10 8 —15 | = —% —% %
Cys Cy Cyy 2 -1 -3 _1% 1% %

To generalize this to invertible n x n matrices, we need another definition and a theorem. Our
definition gives a special name to the cofactor matrix, and the theorem tells us how to use it along
with det(A) to find the inverse of a matrix.

Definition 8.15. Let A be an n x n matrix, and Cj;; denote the ij cofactor of A. The adjoint
of A, denoted adj(A) is the matrix whose ij-entry is the ji cofactor of A, Cj;. That is

Cin Cy ... Cyn

. Cio Cypn ... Chp
adj(A4) = ) . )

Chm, Chp ooe Chom

This new notation greatly shortens the statement of the formula for the inverse of a matrix.

Theorem 8.9. Let A be an invertible n x n matrix. Then

_ 1 :
A7l = madJ(A)

For 2 x 2 matrices, Theorem 8.9 reduces to a fairly simple formula.

Equation 8.2. For an invertible 2 x 2 matrix,

a b1 1 d —b
[c d] _ad—bc[—c a}
The proof of Theorem 8.9 is, like so many of the results in this section, best left to a course in
Linear Algebra. In such a course, not only do you gain some more sophisticated proof techniques,
you also gain a larger perspective. The authors assure you that persistence pays off. If you stick
around a few semesters and take a course in Linear Algebra, you'll see just how pretty all things
matrix really are - in spite of the tedious notation and sea of subscripts. Within the scope of this
text, we will prove a few results involving determinants in Section 9.3 once we have the Principle of

Mathematical Induction well in hand. Until then, make sure you have a handle on the mechanics
of matrices and the theory will come eventually.
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8.5.3 EXERCISES

In Exercises 1 - 8, compute the determinant of the given matrix. (Some of these matrices appeared
in Exercises 1 - 8 in Section 8.4.)

[ 12 -7 [ 6 15
LB=| 3] 2.0=| 4 3
1 In(z)
i 2 3 3
30— x x] AL — T x
|1 2z 3 1—3lIn(x)
— x4
4 6 -3 1 2 3
5. F =13 4 -3 6. G=1|2 3 11
1 2 6 3 4 19
_ , 1 0 =30
15k -
7. V=]-1 0 5 8. H= 2 2 81
9 —4 _9 -5 0 16 0
- 1 0 4 1

In Exercises 9 - 14, use Cramer’s Rule to solve the system of linear equations.

9 3x+7y = 26 10 20 —4y = 5
"l bx+12y = 39 ' 10z + 13y = —6
_ 1.1, _
1. r+y = 8000 12. 5T — 2Y 1
0.03z +0.05y = 250 6x+7y = 3
r+y+z = 3 Jxr+y—2z = 10
13. 2r—y+2z = 0 14. de—y+z = 5
-3z +5y+T7z = 7 r—3y—4z = -1
In Exercises 15 - 16, use Cramer’s Rule to solve for x,.
T, — Ty = —2 dr, +x, = 4
2$2 - :,U4 — 0 562 - 3.'];3 — 1
15. T, — 22y x5 = 0 16. 10z, + 25 +24 = 0
—xs+x, = 1 —xy+ x5 = —3
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In Exercises 17 - 18, find the inverse of the given matrix using their determinants and adjoints.

17.

19.

20.

21.

22.

23.

24.

25.

4 6 -3
B:[_lg _;] 18. F=1|3 4 -3
1 2 6

Carl’s Sasquatch Attack! Game Card Collection is a mixture of common and rare cards.
Each common card is worth $0.25 while each rare card is worth $0.75. If his entire 117 card
collection is worth $48.75, how many of each kind of card does he own?

How much of a 5 gallon 40% salt solution should be replaced with pure water to obtain 5
gallons of a 15% solution?

How much of a 10 liter 30% acid solution must be replaced with pure acid to obtain 10 liters
of a 50% solution?

Daniel’s Exotic Animal Rescue houses snakes, tarantulas and scorpions. When asked how
many animals of each kind he boards, Daniel answered: ‘We board 49 total animals, and I
am responsible for each of their 272 legs and 28 tails.” How many of each animal does the
Rescue board? (Recall: tarantulas have 8 legs and no tails, scorpions have 8 legs and one
tail, and snakes have no legs and one tail.)

This exercise is a continuation of Exercise 16 in Section 8.4. Just because a system is consistent
independent doesn’t mean it will admit a solution that makes sense in an applied setting.
Using the nutrient values given for Ippizuti Fish, Misty Mushrooms, and Sun Berries, use
Cramer’s Rule to determine the number of servings of Ippizuti Fish needed to meet the needs
of a daily diet which requires 2500 calories, 1000 grams of protein, and 400 milligrams of
Vitamin X. Now use Cramer’s Rule to find the number of servings of Misty Mushrooms
required. Does a solution to this diet problem exist?

-7 3 1 -5 11 2 -3 15
e[ 3] se[ 3] re [ 2] mano] ]
(a) Show that det(RS) = det(R)det(S5)
(b) Show that det(T") = — det(R)
(c) Show that det(U) = —3det(S)

For M, N, and P below, show that det(M) = 0, det(N) = 0 and det(P) = 0.
1 2 3 1 2 3 1 2 3

M=]00UO0}|, N=|123]|, P=|-2 -4 -6

7 8 9 4 5 6 7T 8 9
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26. Let A be an arbitrary invertible 3 x 3 matrix.
(a) Show that det(l;) = 1.8
(b) Using the facts that AA~! = I3 and det(AA~!) = det(A) det(A~!), show that

1
~ det(A)

det(A™1)

The purpose of Exercises 27 - 30 is to introduce you to the eigenvalues and eigenvectors of a matrix.’
We begin with an example using a 2 x 2 matrix and then guide you through some exercises using
a 3 x 3 matrix. Consider the matrix
- 6 15
N [ 14 35 ]

from Exercise 2. We know that det(C) = 0 which means that CX = 0,4, does not have a unique
solution. So there is a nonzero matrix Y with CY = 0,x,. In fact, every matrix of the form

5
—3¢
t

is a solution to CX = 0,x,, so there are infinitely many matrices such that CX = 0,4,. But
consider the matrix

Yy =

3
X4l - I 7 ]
It is NOT a solution to CX = 0,x,, but rather,
6 15 3] [ 123 3
CX‘“_{M 35] [7_ - _287]_41[7]
In fact, if Z is of the form
-
z=| 7
t

then

-~

3 123 3
6 15 5t =t =t
[14 35”75] [41t t
for all t. The big question is “How did we know to use 4177

We need a number A such that C X = AX has nonzero solutions. We have demonstrated that A =0
and A = 41 both worked. Are there others? If we look at the matrix equation more closely, what

8If you think about it for just a moment, you’ll see that det(I,) = 1 for any natural number n. The formal proof
of this fact requires the Principle of Mathematical Induction (Section 9.3) so we’ll stick with n = 3 for the time being.

9This material is usually given its own chapter in a Linear Algebra book so clearly we’re not able to tell you
everything you need to know about eigenvalues and eigenvectors. They are a nice application of determinants,
though, so we’re going to give you enough background so that you can start playing around with them.
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we really wanted was a nonzero solution to (C' — AI,) X = 0,x, which we know exists if and only if
the determinant of C' — A1, is zero.'” So we computed

6— A\ 15

det(C—AL)zdet([ 14 35— )

D =(6—N)(35—A) —14-15 =A% — 41\

This is called the characteristic polynomial of the matrix C and it has two zeros: A = 0 and
A = 41. That’s how we knew to use 41 in our work above. The fact that A = 0 showed up as one
of the zeros of the characteristic polynomial just means that C itself had determinant zero which
we already knew. Those two numbers are called the eigenvalues of C. The corresponding matrix

solutions to CX = AX are called the eigenvectors of C and the ‘vector’ portion of the name will
make more sense after you've studied vectors.

Now it’s your turn. In the following exercises, you’ll be using the matrix G' from Exercise 6.

1 2 3
G=|2 3 11
3 4 19

27. Show that the characteristic polynomial of G is p(A) = —A(A — 1)(A — 22). That is, compute
det (G — AI).

28. Let G, = GG. Find the parametric description of the solution to the system of linear equations
given by GX = 03x3.

29. Let G, = G — I,. Find the parametric description of the solution to the system of linear
equations given by G; X = 0;5x5. Show that any solution to G; X = 0345 also has the property
that GX = 1X.

30. Let G4, = G — 221;. Find the parametric description of the solution to the system of linear
equations given by G, X = 05x3. Show that any solution to G,, X = 0345 also has the
property that GX = 22X.

0T hink about this.
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8.5.4 ANSWERS

1.

11.

13.

15.

17.

18.

19.
20.
21.
22.
23.

det(B) =1
. det(Q) = 2?
. det(F) =—12

det(V) = 20i + 435 + 4k

=39, y=-13

x = 7500, y = 500

r=1,y=2 2=0

1‘4:4
3 7
-1 _
B 5 12
r .51 1
2 2 2
-1 _ 7 9 1
Fo=1 4 -1 -3
111
L 6 6 6

10.

12.

14.

16.

Carl owns 78 common cards and 39 rare cards.

3.125 gallons.

2—70 ~ 2.85 liters.

. det(C) =0

- det(L) = %

. det(G) =0

. det(H) = -2
T=75 y=—3%
r=14,y=—1

_ 121 — 131 _
T="%0>Y= %01 #=

The rescue houses 15 snakes, 21 tarantulas and 13 scorpions.

53

"~ 60

627

Using Cramer’s Rule, we find we need 53 servings of Ippizuti Fish to satisfy the dietary
requirements. The number of servings of Misty Mushrooms required, however, is —1120.
Since it’s impossible to have a negative number of servings, there is no solution to the applied
problem, despite there being a solution to the mathematical problem. A cautionary tale
about using Cramer’s Rule: just because you are guaranteed a mathematical answer for each
variable doesn’t mean the solution will make sense in the ‘real” world.
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8.6 PARTIAL FRACTION DECOMPOSITION

This section uses systems of linear equations to rewrite rational functions in a form more palatable
to Calculus students. In College Algebra, the function

2
¢ —x—6
)= —u— 1
fa) = (1)
is written in the best form possible to construct a sign diagram and to find zeros and asymptotes,
but certain applications in Calculus require us to rewrite f(z) as

fay=2tT 1O (2)

S22+l oz a2?
If we are given the form of f(z) in (2), it is a matter of Intermediate Algebra to determine a common
denominator to obtain the form of f(x) given in (1). The focus of this section is to develop a method
by which we start with f(x) in the form of (1) and ‘resolve it into partial fractions’ to obtain the
form in (2). Essentially, we need to reverse the least common denominator process. Starting with
the form of f(x) in (1), we begin by factoring the denominator

2 —x—6 2 —x—6

42?2 2?2 (a2 +1)

We now think about which individual denominators could contribute to obtain z? (x2 + 1) as the
least common denominator. Certainly 22 and z? + 1, but are there any other factors? Since
22 + 1 is an irreducible quadratic' there are no factors of it that have real coefficients which can
contribute to the denominator. The factor 22, however, is not irreducible, since we can think of it as
2? = x2 = (v — 0)(2 — 0), a so-called ‘repeated’ linear factor.? This means it’s possible that a term
with a denominator of just x contributed to the expression as well. What about something like
x (w2 + 1)? This, too, could contribute, but we would then wish to break down that denominator
into  and (af:2 + 1), so we leave out a term of that form. At this stage, we have guessed

22 —x—6 2 —x—6 ? ? ?

v +22 22224+ 1) 2 +x2+1

Our next task is to determine what form the unknown numerators take. It stands to reason that
since the expression ‘”;[ fxgﬁ is ‘proper’ in the sense that the degree of the numerator is less than
the degree of the denominator, we are safe to make the ansatz that all of the partial fraction
resolvents are also. This means that the numerator of the fraction with x as its denominator is just
a constant and the numerators on the terms involving the denominators z? and 22 + 1 are at most

linear polynomials. That is, we guess that there are real numbers A, B, C, D and E so that

2 —x—6 xz—x—6_é Bx+C Dx+ FE

i 2?2 22(2241) =z x2 z?2+1

'Recall this means it has no real zeros; see Section 3.4.
2Recall this means = = 0 is a zero of multiplicity 2.
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However, if we look more closely at the term B’;*Q'C, we see that Bﬁ%c = % + z% = % + x% The
term % has the same form as the term % which means it contributes nothing new to our expansion.
Hence, we drop it and, after re-labeling, we find ourselves with our new guess:

a:2—a:—6_ 22 —x—6 _é+§+C$+D
ri+a?  22(2241) oz 22 a2+1

Our next task is to determine the values of our unknowns. Clearing denominators gives
2*—z2—6=Ar (2 +1) + B (2* + 1) + (Cz + D)a?
Gathering the like powers of = we have
1’ —2—-6=(A+0)z*+ (B+D)r*+ Az + B

In order for this to hold for all values of x in the domain of f, we equate the coefficients of
corresponding powers of = on each side of the equation® and obtain the system of linear equations

(E1) A+C = 0 From equating coefficients of z*
(E2) B+D = 1 From equating coefficients of x2
(E3) A = -1 From equating coefficients of =
(E4) B = —6 From equating the constant terms

To solve this system of equations, we could use any of the methods presented in Sections 8.1 through
8.5, but none of these methods are as efficient as the good old-fashioned substitution you learned
in Intermediate Algebra. From FE3, we have A = —1 and we substitute this into £1 to get C' = 1.
Similarly, since F4 gives us B = —6, we have from E2 that D = 7. We get

2 —x—6 2 —x—6 1 6 x+ 7

a2 2222 +1) oz 2?2 2241

which matches the formula given in (2). As we have seen in this opening example, resolving a
rational function into partial fractions takes two steps: first, we need to determine the form of
the decomposition, and then we need to determine the unknown coefficients which appear in said
form. Theorem 3.16 guarantees that any polynomial with real coefficients can be factored over
the real numbers as a product of linear factors and irreducible quadratic factors. Once we have
this factorization of the denominator of a rational function, the next theorem tells us the form the
decomposition takes. The reader is encouraged to review the Factor Theorem (Theorem 3.6) and
its connection to the role of multiplicity to fully appreciate the statement of the following theorem.

3We will justify this shortly.
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N(x)
D(x)
than the degree of D(z) ® and N(x) and D(x) have no common factors.

Theorem 8.10. Suppose R(z) = is a rational function where the degree of N(x) less

e If ¢ is a real zero of D of multiplicity m which corresponds to the linear factor ax + b, the
partial fraction decomposition includes

Ay n A, o Am
ar+b (ax+0)?2 7 (ax+b)™

for real numbers A,, A,, ... A,,.

e [f cis a non-real zero of D of multiplicity m which corresponds to the irreducible quadratic
ax?® + bz + ¢, the partial fraction decomposition includes

Bz + C; B.x + C, Bx+ C,,
ar? +br+c  (ax?+bz+c)* (aa? +bz+c)"

for real numbers B, B,, ... B, and C,, C,, ...Cp,.

“In other words, R(z) is a proper rational function.

The proof of Theorem 8.10 is best left to a course in Abstract Algebra. Notice that the theorem
provides for the general case, so we need to use subscripts, A,, A,, etc., to denote different unknown
coefficients as opposed to the usual convention of A, B, etc.. The stress on multiplicities is to help
us correctly group factors in the denominator. For example, consider the rational function

3z —1
(22 —=1)(2— 2z —2?)
Factoring the denominator to find the zeros, we get (z +1)(z —1)(1 —2)(2 4+ x). We find x = —1

and x = —2 are zeros of multiplicity one but that x = 1 is a zero of multiplicity two due to the two
different factors (z — 1) and (1 — ). One way to handle this is to note that (1 —z) = —(z — 1) so

3z —1 3r—1 1-—3x

(r+D)(z-1)1-2)2+2) —(z—1)2(z+1)(x+2) (z—-12(x+1)(z+2)

from which we proceed with the partial fraction decomposition

1—3x A B C D

G102t @12 o-1 @—12 z+1 212
Turning our attention to non-real zeros, we note that the tool of choice to determine the irreducibil-
ity of a quadratic az? + bx + ¢ is the discriminant, b — 4ac. If b?> — 4ac < 0, the quadratic admits a
pair of non-real complex conjugate zeros. Even though one irreducible quadratic gives two distinct
non-real zeros, we list the terms with denominators involving a given irreducible quadratic only
once to avoid duplication in the form of the decomposition. The trick, of course, is factoring the
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denominator or otherwise finding the zeros and their multiplicities in order to apply Theorem 8.10.
We recommend that the reader review the techniques set forth in Sections 3.3 and 3.4. Next, we
state a theorem that if two polynomials are equal, the corresponding coefficients of the like powers
of x are equal. This is the principal by which we shall determine the unknown coefficients in our
partial fraction decomposition.

Theorem 8.11. Suppose

X"+ ap_ 2" it azta=bp™ M 2™ b b+ by

for all z in an open interval I. Then n =m and a; = b; for alli =1...n.

Believe it or not, the proof of Theorem 8.11 is a consequence of Theorem 3.14. Define p(z) to be
the difference of the left hand side of the equation in Theorem 8.11 and the right hand side. Then
p(z) = 0 for all z in the open interval I. If p(z) were a nonzero polynomial of degree k, then, by
Theorem 3.14, p could have at most k zeros in I, and k is a finite number. Since p(x) = 0 for all
the x in I, p has infinitely many zeros, and hence, p is the zero polynomial. This means there can
be no nonzero terms in p(x) and the theorem follows. Arguably, the best way to make sense of
either of the two preceding theorems is to work some examples.

Example 8.6.1. Resolve the following rational functions into partial fractions.

T+95 3 3
1. R(z) = -——— 2. Rz)= ———— 3 Rlg)= — 2>
() 202 —x—1 () x3— 222+ 2 (z) 3 —22 4
423 23+ 5 —1 8?2
R(z) x2 —2 5. R(z) x4+ 62249 6. R(z) x4+ 16

Solution.
1. We begin by factoring the denominator to find 222 —z —1 = (2z+1)(z —1). We get = —1

and x = 1 are both zeros of multiplicity one and thus we know

r+5 z+5 A N B
222 —x—1 (z+D(z—-1) 2o+1 z-1

Clearing denominators, we get 45 = A(x —1)+B(2z+1) so that z+5 = (A+2B)z+B— A.
Equating coefficients, we get the system

A+2B = 1
—A+B = 5

This system is readily handled using the Addition Method from Section 8.1, and after adding
both equations, we get 3B = 6 so B = 2. Using back substitution, we find A = —3. Our
answer is easily checked by getting a common denominator and adding the fractions.

Tr+95 2 3

22 21 -1 2z+1
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2. Factoring the denominator gives 2 — 222+ =« (:1:2 — 2 + 1) = z(z—1)? which gives = 0

as a zero of multiplicity one and = = 1 as a zero of multiplicity two. We have

3 3 A, B C
xr

:L‘3—2:L‘2+:U:a:(x—1)2_ +x—1+(x—1)2

Clearing denominators, we get 3 = A(z — 1)? + Bz(x — 1) + Cx, which, after gathering up
the like terms becomes 3 = (A + B)x? 4+ (—2A — B + O)x + A. Our system is

A+B = 0
—2A-B+C = 0
A =3

Substituting A = 3 into A + B = 0 gives B = —3, and substituting both for A and B in
—2A — B+ C =0 gives C = 3. Our final answer is

3 3 3 3
w3 —-222+r x -1 (v—1)2

2

. The denominator factors as x (x —x+ 1). We see immediately that x = 0 is a zero of

multiplicity one, but the zeros of x> — x 4+ 1 aren’t as easy to discern. The quadratic doesn’t
factor easily, so we check the discriminant and find it to be (—1)? — 4(1)(1) = —3 < 0. We
find its zeros are not real so it is an irreducible quadratic. The form of the partial fraction
decomposition is then

3 3 A Bx +C

-2+ w@2-2+1) z 22—z +1

Proceeding as usual, we clear denominators and get 3 = A (z? —2 +1) + (Bz + C)z or
3=(A+B)z?+ (-A+C)r+ A. We get

A+B = 0
—-A+C =0
A =3

From A=3and A+ B=0, we get B=—-3. From —A+ C =0, we get C' = A = 3. We get

3 3 3 -3z

ar3—a:2+:z:_x+ac2—x+l

. Since x42{ 5 isn’t proper, we use long division and we get a quotient of 4z with a remainder of
) 3 . . . .
8z. That is, 142“’6_ 5 =4z + m§f2 so we now work on resolving zgf 5 into partial fractions. The

quadratic 2 — 2, though it doesn’t factor nicely, is, nevertheless, reducible. Solving 2 —2 =0
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gives us = ++/2, and each of these zeros must be of multiplicity one since Theorem 3.14
enables us to now factor 22 — 2 = (x — ﬂ) (x + \/i) Hence,

8r 8x A . B
22=2  (z-v2)(z+V2) z-v2 z+vV2

Clearing fractions, we get 8z = A (z +v2) + B (z — v2) or 8z = (A+ B)z + (A — B)V2.
We get the system

A+B = 8
(e =0

From (A — B)v/2 = 0, we get A = B, which, when substituted into A 4+ B = 8 gives B = 4.
Hence, A = B = 4 and we get

4z TS S
x2 —2 x2 —2 T+V2 =2
5. At first glance, the denominator D(x) = z* 4 622 4+ 9 appears irreducible. However, D(x) has
three terms, and the exponent on the first term is exactly twice that of the second. Rewriting
D(z) = (1‘2)2 + 622 + 9, we see it is a quadratic in disguise and factor D(z) = (z* + 3)2.
Since 22 + 3 clearly has no real zeros, it is irreducible and the form of the decomposition is

3+ 5z —1 x3+5x—1_A:c+B Cx+ D

at+622+9  (2243)2 2243 (2243)

When we clear denominators, we find 2® + 5z — 1 = (Az + B) (2% 4+ 3) + Cz + D which yields
23452 — 1 = Az + Ba? + (3A+ C)x + 3B + D. Our system is

A =

B =
3A+C =
3B+D = -—

A e

We have A =1 and B = 0 from which we get C' =2 and D = —1. Our final answer is

x3+5x—1_ T L 20 — 1
at+622+9 2243 (22 +3)?

6. Once again, the difficulty in our last example is factoring the denominator. In an attempt to
get a quadratic in disguise, we write

2416 = (22)° + 42 = (2?)° + 822 + 42 — 822 = (22 +4)° — 827



634

SYSTEMS OF EQUATIONS AND MATRICES

and obtain a difference of two squares: (:U2 + 4)2 and 822 = (23:\/§)Q. Hence,

216 = (x2+4—2w\/§> <x2+4+2x\/§) - ($2—2x\/§+4) (x2+2x\/§+4)

The discrimant of both of these quadratics works out to be —8 < 0, which means they are
irreducible. We leave it to the reader to verify that, despite having the same discriminant,
these quadratics have different zeros. The partial fraction decomposition takes the form

82 82 Ax + B Cx+D

= +
et +16 (22 —22v2+4) (22 +22vV2+4) 22 —22V2+4 22 +22V2+4

We get 822 = (Az + B) (2 4+ 22v2 +4) + (Cz + D) (2? — 2zv/2+4) or

822 = (A+ O)az® + (2AV2 + B — 2CV2 4 D)a? + (4A+ 2BV2 + 4C — 2DV/?2)x + 4B + 4D

which gives the system

A+C =
24v/2+ B — 202+ D
4A + 2B\2 + 4C — 2DV?2
4B +4D =

Il
oo wo

We choose substitution as the weapon of choice to solve this system. From A+ C = 0, we
get A= —C from 4B 4+ 4D = 0, we get B = —D. Substituting these into the remaining two
equations, we get

—20V2—-D—-20V2+D = 8
—4C —2D\2 +4C —2DV2 = 0

or

{—40\/5 = 8
—4DV2 = 0

We get C' = —v2 so that A = —C = /2 and D = 0 which means B = —D = 0. We get

82 - /2 V2
2 +16 22 —22/24+4 22+ 22V2+4
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8.6.1

EXERCISES

In Exercises 1 - 6, find only the form needed to begin the process of partial fraction decomposition.
Do not create the system of linear equations or attempt to find the actual decomposition.

1.

3.

D.

7 9 or +4
(z —3)(z +5) Cz(r—2)(2 - )
m . 4 ar? +br +c
(Tz = 6)(2*+9) C23(5r +9)(3x2 + Tr +9)
A polynomial of degree < 9 A polynomial of degree < 7
(x +4)5(x2 +1)2 " z(4x — 1)%(2? + 5)(922 + 16)

In Exercises 7 - 18, find the partial fraction decomposition of the following rational expressions.

7.

11.

13.

15.

17.

19.

2x 3 —Tx +43
2 —1 " 3224192 — 14
1122 — 52 — 10 10 —222 + 20z — 68
53 — 52 "3 4+ 422 + 4x + 16
—22 4+ 15 19 2122+ 1 —16
4z + 40x2 + 36 "33 4+ 422 —3x+2
5z* — 3423 + 7022 — 33z — 19 " 20 + 52° + 162* + 802% — 222 4 62 — 43
(x — 3)? ' 23 + 5x2 4 16x + 80
—7x% — 762 — 208 r —10z* + 2% — 1922+ 2 — 10
x3 4+ 1822 4+ 108z + 216 ' 2 4+ 223 + &
423 — 92?2 + 122 + 12 8 222 4 3z + 14
x* — 423 4 822 — 16z + 16 (224224 9)(22+ 2 +5)

As we stated at the beginning of this section, the technique of resolving a rational function
into partial fractions is a skill needed for Calculus. However, we hope to have shown you that
it is worth doing if, for no other reason, it reinforces a hefty amount of algebra. One of the
common algebraic errors the authors find students make is something along the lines of

8 8 8
2072 9

Think about why if the above were true, this section would have no need to exist.
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8.6.2 ANSWERS

10.

11.

12.

13.

14.

15.

16.

17.

18.

A N B 5 AJr B n C
r—3 x+5 Cx oz —2  (z—2)?

A +B:U+C 4A+B+C+ D . Ex+ F
Tx—6 2249 Cx o223 br+9 3124749
A N B N C N D N E +FJ:+G+H:1:+I
z+4  (x+4)?2 (x+4)3 (z+4)* (44> 22+1  (22+41)?
é+ B n C +D1:+E+Fx+G
r 4dr—1 (4z-1)2 2245 922416

20 1 N 1
22—-1 z4+1 z-1

—Tx+43 5 4
3024+ 19214 32-2 2+7
1122 =5z —10 3 2 4

5r3 —5x2 w22 5(x—1)

—20*+200-68 9 L Tz-8
w3 +4x2+4x+16 x+4  z2+4

—22+15 1 3

Az 14022+ 36 2(22+1) 4(z2+9)

—2la*4+2-16 6 3r+5
3x3 4422 —-3x+2  x+2 3x2—2x+1

5zt — 3423 + 7022 — 33z — 19 B

9 1
a2 —dx+ 1+ -
X

(x —3)2 -3 (xz—3)
2% + 525 + 162 + 8023 — 22 + 62 — 43 3, o+l 3
= —_
a3 + 5x? 4+ 162 + 80 x2+16 x+45
—Ta2? — 76z —208 7 L8 4
23+ 1822 + 108z +216 x+6 (z+6)2 (z+6)3
—102* + 2® — 1922 + 2 — 10 0, t =
o+ 223 + o oz 22+l (22+1)2
423 — 9z? + 122 + 12 1 4 3z +1

45182 162416 72 (222  22+4
222 + 32 + 14 1 1

(22422 +9)(22 + 2 +5) T o219 Zizis
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8.7 SYSTEMS OF NON-LINEAR EQUATIONS AND INEQUALITIES

In this section, we study systems of non-linear equations and inequalities. Unlike the systems of
linear equations for which we have developed several algorithmic solution techniques, there is no
general algorithm to solve systems of non-linear equations. Moreover, all of the usual hazards of
non-linear equations like extraneous solutions and unusual function domains are once again present.
Along with the tried and true techniques of substitution and elimination, we shall often need equal
parts tenacity and ingenuity to see a problem through to the end. You may find it necessary to
review topics throughout the text which pertain to solving equations involving the various functions
we have studied thus far. To get the section rolling we begin with a fairly routine example.

Example 8.7.1. Solve the following systems of equations. Verify your answers algebraically and
graphically.

422 + 9y = 36 ' y—2x = 0
2- 2 2 4- 2
4 — 9y = 36 y—az‘ = 0

SOLUTION:

1. Since both equations contain 2 and %2 only, we can eliminate one of the variables as we did
in Section 8.1.

(El) z? + y2 = 4 Replace E2 with (El) 72 + y2 — 4
_
(B2) 42°+9y° = 36 —4E1 + B2 (E2) 502 = 20

From 532 = 20, we get 4> = 4 or y = £2. To find the associated z values, we substitute each
value of y into one of the equations to find the resulting value of . Choosing z? + 3% = 4,
we find that for both y = —2 and y = 2, we get = 0. Our solution is thus {(0,2), (0, —2)}.
To check this algebraically, we need to show that both points satisfy both of the original
equations. We leave it to the reader to verify this. To check our answer graphically, we sketch
both equations and look for their points of intersection. The graph of 22 + y? = 4 is a circle
centered at (0,0) with a radius of 2, whereas the graph of 422 +9y? = 36, when written in the
standard form %2 + 31—2 = 1 is easily recognized as an ellipse centered at (0,0) with a major
axis along the z-axis of length 6 and a minor axis along the y-axis of length 4. We see from
the graph that the two curves intersect at their y-intercepts only, (0,42).

2. We proceed as before to eliminate one of the variables

Il
.

{ (E1) 22442

4 Replace E2 with (El) x? + y2
—_—
(F2) 42%-9y*> = 36 —4E1+ E2

(E2) —13y> = 20
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Since the equation —13y? = 20 admits no real solution, the system is inconsistent. To verify
this graphically, we note that 2% + y? = 4 is the same circle as before, but when writing the
second equation in standard form, % — % = 1, we find a hyperbola centered at (0,0) opening
to the left and right with a transverse axis of length 6 and a conjugate axis of length 4. We

see that the circle and the hyperbola have no points in common.

RN VAN
v N

?2+y? = 4
422 — 9> = 36

2 \3 ¢

?2+y? = 4

Graphs for {4$2+9y2 _ 36

Graphs for {

. Since there are no like terms among the two equations, elimination won’t do us any good.

We turn to substitution and from the equation y — 2x = 0, we get y = 2x. Substituting this
into 22 + y? = 4 gives 22 + (27)? = 4. Solving, we find 522 = 4 or = = :EQT‘/E. Returning
45 25

5

to the equation we used for the substitution, y = 2z, we find y = when z = =2, so

one solution is (%ﬁ, 4T\/g> Similarly, we find the other solution to be (—2?‘/5, —4?\/5) We

leave it to the reader that both points satisfy both equations, so that our final answer is

{(%ﬁ, 4T\/5) , (—QT‘/g, —%)}. The graph of 22 4+ y? = 4 is our circle from before and the

graph of y — 2x = 0 is a line through the origin with slope 2. Though we cannot verify the
numerical values of the points of intersection from our sketch, we do see that we have two
solutions: one in Quadrant I and one in Quadrant III as required.

. While it may be tempting to solve y — 2> = 0 as y = x? and substitute, we note that this

system is set up for elimination.'

(E1) 2%+ 3/2 = 4 Replace E2 with (E1) x2 4 y2 — 4
—
(B2) y—22 = 0 F1+ B2 (B2) o4y = 4

From 42 4+ y = 4 we get y> +y — 4 = 0 which gives y = %ﬁ Due to the complicated

nature of these answers, it is worth our time to make a quick sketch of both equations to head
off any extraneous solutions we may encounter. We see that the circle 22 + y? = 4 intersects
the parabola y = 22 exactly twice, and both of these points have a positive y value. Of the
two solutions for y, only y = *l%m is positive, so to get our solution, we substitute this

We encourage the reader to solve the system using substitution to see that you get the same solution.
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into y — 22 = 0 and solve for . We get z = i\/ﬁ = i@
{(W _1+m) (_m —1+\/ﬁ>}
2 ) 2 ’ 2 ) 2

. Our solution is

, which we leave to the reader to verify.

, , , , , , ,
} } } } } } } }
—3 -2\ -1 JQ 3 ' -3 —QKJ2 3 g
1 -1l

y—2z = 0

Graphs for { 9

Graphs for { y—a? — 36

O

A couple of remarks about Example 8.7.1 are in order. First note that, unlike systems of linear
equations, it is possible for a system of non-linear equations to have more than one solution without
having infinitely many solutions. In fact, while we characterize systems of nonlinear equations as
being ‘consistent’ or ‘inconsistent,” we generally don’t use the labels ‘dependent’ or ‘independent’.
Secondly, as we saw with number 4, sometimes making a quick sketch of the problem situation can
save a lot of time and effort. While in general the curves in a system of non-linear equations may
not be easily visualized, it sometimes pays to take advantage when they are. Our next example
provides some considerable review of many of the topics introduced in this text.

Example 8.7.2. Solve the following systems of equations. Verify your answers algebraically and
graphically, as appropriate.

1 2?4+ 22y—16 = 0 5 y+4e?r = 1 26—2) = =
v+ 20y —16 = 0 Tl 242t = 1 3. yz = y
(r=20°+¢y* = 1

Solution.

1. At first glance, it doesn’t appear as though elimination will do us any good since it’s clear
that we cannot completely eliminate one of the variables. The alternative, solving one of
the equations for one variable and substituting it into the other, is full of unpleasantness.
Returning to elimination, we note that it is possible to eliminate the troublesome zy term,
and the constant term as well, by elimination and doing so we get a more tractable relationship
between x and y

(E1) 2?+22y—16 = 0  Replace B2 with (E1) 2242zy—16 = 0
Replace B2 with,
(B2) y*+2ry—16 = 0 _E1+ B2 (E2) w2—z2 = 0
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We get y?> — 22 = 0 or y = 4. Substituting y = z into E1 we get 22 + 222 — 16 = 0 so

that 22 = % or r = :|:4—‘3/§. On the other hand, when we substitute y = —x into E'1, we get
22 — 22? — 16 = 0 or 22 = —16 which gives no real solutions. Substituting each of z = i%ﬁ

into the substitution equation y = x yields the solution {(%ﬁ, %) , (—‘Lgﬁ, —%) } We
leave it to the reader to show that both points satisfy both equations and now turn to verifying
our solution graphically. We begin by solving x?+2xy—16 = 0 for y to obtain y = 162; 22 This
function is easily graphed using the techniques of Section 4.2. Solving the second equation,
y? + 22y — 16 = 0, for y, however, is more complicated. We use the quadratic formula to
obtain y = —x + v/x2 + 16 which would require the use of Calculus or a calculator to graph.
Believe it or not, we don’t need either because the equation y? 4 2xy — 16 = 0 can be obtained
from the equation x? + 2xy — 16 = 0 by interchanging y and x. Thinking back to Section
5.2, this means we can obtain the graph of y? + 2xy — 16 = 0 by reflecting the graph of
x? + 2xy — 16 = 0 across the line y = x. Doing so confirms that the two graphs intersect
twice: once in Quadrant I, and once in Quadrant III as required.

AN

s s s
t t t
—4AN\-3 -2 -1

The graphs of 22 4+ 2zy — 16 = 0 and y? + 22y — 16 = 0

2. Unlike the previous problem, there seems to be no avoiding substitution and a bit of algebraic

unpleasantness. Solving y + 4e%* = 1 for y, we get y = 1 — 4e?* which, when substituted into
the second equation, yields (1 — 462””)2 + 2e® = 1. After expanding and gathering like terms,
we get 16e*” — 8e2* 4 2¢% = 0. Factoring gives us 2e* (8631 —4e” + 1) = 0, and since 2e* # 0
for any real z, we are left with solving 8¢3* — 4e® +1 = 0. We have three terms, and even
though this is not a ‘quadratic in disguise’, we can benefit from the substitution u = e*. The
equation becomes 8u3 —4u+1 = 0. Using the techniques set forth in Section 3.3, we find u = %

is a zero and use synthetic division to factor the left hand side as (u — %) (8u2 + 4u — 2). We

use the quadratic formula to solve 8u? 4+ 4u — 2 = 0 and find u = %\/g‘ Since u = €%, we
now must solve e” = } and e® = %\/g. From e = 1, we get z = In () = —In(2). As

for ¥ = %‘/5, we first note that _1%‘/5 <0, s0 e’ = _1%‘/5 has no real solutions. We are
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left with e* = _1%‘/5, so that x = In (%‘/g) We now return to y = 1 — 4€?* to find the

accompanying y values for each of our solutions for xz. For z = —In(2), we get
y = 1—4e*
- 1- 46—2111(2)
= ]_ — 4€ln(%)
_ 1
= 1-4(3)
= 0

For x = 1In (711‘/5» we have

y = 1—4e*
= 1 — 462111(71;’;\/5)
-1 _46111<71X\/g>2
— 1-4 ‘12\@)2
_ 3-V5
= 1-4(35)

. —1+5
- 2

We get two solutions, {(O, —1n(2)), (ln (_11"/5> , _1;"/5> } It is a good review of the prop-
erties of logarithms to verify both solutions, so we leave that to the reader. We are able to
sketch y = 1 — 4€?* using transformations, but the second equation is more difficult and we
resort to the calculator. We note that to graph y? + 2¢“ = 1, we need to graph both the
positive and negative roots, y = /1 — 2e%. After some careful zooming,? we get

o] InkgFsechion
n=".B9Z1472 V=0 n=-1.174358 Y= g1@0==08 -

The graphs of y = 1 — 4€%* and y = £+4/1 — 2€Z.

3. Our last system involves three variables and gives some insight on how to keep such systems
organized. Labeling the equations as before, we have

>The calculator has trouble confirming the solution (— In(2),0) due to its issues in graphing square root functions.
If we mentally connect the two branches of the thicker curve, we see the intersection.
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E1l 2(x—2) = =z
E2 yz =y
E3 (z—-22%+y*> = 1

The easiest equation to start with appears to be £2. While it may be tempting to divide
both sides of E£2 by y, we caution against this practice because it presupposes y # 0. Instead,
we take E2 and rewrite it as yz —y = 0 so y(z — 1) = 0. From this, we get two cases: y =0
or z = 1. We take each case in turn.

CASE 1: y =0. Substituting y = 0 into E1 and E3, we get
El z(x—-2) = =z
E3 (z-2)?2 =1

Solving E3 for x gives = 1 or x = 3. Substituting these values into E'1 gives z = —1 when
x =1 and z = 3 when z = 3. We obtain two solutions, (1,0,—1) and (3,0, 3).

CASE 2: z=1. Substituting z =1 into F'1 and E3 gives us

E1l (1)(x —2) x
{E3 (1-22%+¢% = 1

Equation E1 gives us x — 2 = z or —2 = 0, which is a contradiction. This means we have
no solution to the system in this case, even though E3 is solvable and gives y = 0. Hence,
our final answer is {(1,0,—1),(3,0,3)}. These points are easy enough to check algebraically
in our three original equations, so that is left to the reader. As for verifying these solutions
graphically, they require plotting surfaces in three dimensions and looking for intersection
points. While this is beyond the scope of this book, we provide a snapshot of the graphs of
our three equations near one of the solution points, (1,0, —1).

O

Example 8.7.2 showcases some of the ingenuity and tenacity mentioned at the beginning of the
section. Sometimes you just have to look at a system the right way to find the most efficient
method to solve it. Sometimes you just have to try something.
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We close this section discussing how non-linear inequalities can be used to describe regions in
the plane which we first introduced in Section 2.4. Before we embark on some examples, a little
motivation is in order. Suppose we wish to solve 22 < 4 —y?. If we mimic the algorithms for solving
nonlinear inequalities in one variable, we would gather all of the terms on one side and leave a 0
on the other to obtain 2 + 4> — 4 < 0. Then we would find the zeros of the left hand side, that
is, where is 22 + 3% — 4 = 0, or 22 + 3% = 4. Instead of obtaining a few numbers which divide the
real number line into intervals, we get an equation of a curve, in this case, a circle, which divides
the plane into two regions - the ‘inside’ and ‘outside’ of the circle - with the circle itself as the
boundary between the two. Just like we used test values to determine whether or not an interval
belongs to the solution of the inequality, we use test points in the each of the regions to see which
of these belong to our solution set.®> We choose (0, 0) to represent the region inside the circle and
(0,3) to represent the points outside of the circle. When we substitute (0,0) into 2% + 32 — 4 < 0,
we get —4 < 4 which is true. This means (0,0) and all the other points inside the circle are part of
the solution. On the other hand, when we substitute (0,3) into the same inequality, we get 5 < 0
which is false. This means (0,3) along with all other points outside the circle are not part of the
solution. What about points on the circle itself? Choosing a point on the circle, say (0,2), we get
0 < 0, which means the circle itself does not satisfy the inequality.* As a result, we leave the circle
dashed in the final diagram.

The solution to z2 < 4 — y2

We put this technique to good use in the following example.

Example 8.7.3. Sketch the solution to the following nonlinear inequalities in the plane.

Ly2—4<a<y+?2 5 { z? + 1

>
22 —2r+19y% -2y <

Solution.
1. The inequality y?> — 4 < & < y + 2 is a compound inequality. It translates as y?> — 4 < z

and x < y 4+ 2. As usual, we solve each inequality and take the set theoretic intersection
to determine the region which satisfies both inequalities. To solve y? — 4 < x, we write

3The theory behind why all this works is, surprisingly, the same theory which guarantees that sign diagrams work
the way they do - continuity and the Intermediate Value Theorem - but in this case, applied to functions of more
than one variable.

4 Another way to see this is that points on the circle satisfy 22 +y? —4 = 0, so they do not satisfy 2 + 3% —4 < 0.



644

SYSTEMS OF EQUATIONS AND MATRICES

y> —x —4 < 0. The curve y> — 2 — 4 = 0 describes a parabola since exactly one of the

variables is squared. Rewriting this in standard form, we get y?> = 2 + 4 and we see that the
vertex is (—4,0) and the parabola opens to the right. Using the test points (—5,0) and (0, 0),
we find that the solution to the inequality includes the region to the right of, or ‘inside’, the
parabola. The points on the parabola itself are also part of the solution, since the vertex
(—4,0) satisfies the inequality. We now turn our attention to z < y+2. Proceeding as before,
we write x — y — 2 < 0 and focus our attention on x —y — 2 = 0, which is the line y = = — 2.
Using the test points (0,0) and (0, —4), we find points in the region above the line y = x — 2
satisfy the inequality. The points on the line y = z — 2 do not satisfy the inequality, since
the y-intercept (0, —2) does not. We see that these two regions do overlap, and to make the
graph more precise, we seek the intersection of these two curves. That is, we need to solve
the system of nonlinear equations

r+4
xr—2

Solving E1 for z, we get x = y? — 4. Substituting this into E2 gives y = y?> — 4 — 2, or

y> —y—6=0. We find y = —2 and y = 3 and since x = y? — 4, we get that the graphs
intersect at (0, —2) and (5,3). Putting all of this together, we get our final answer below.

Y Y Y
r T 4
i 4
t ———+—+ —F——+—+ :K::/:::

T 72 3 4 5°T —5-4 //23452?

L 1

% 4

-3

/]
_31 31

P —4<z r<y+2 VP-4 <z<y+?2

. To solve this system of inequalities, we need to find all of the points (z,y) which satisfy

both inequalities. To do this, we solve each inequality separately and take the set theoretic
intersection of the solution sets. We begin with the inequality 22 +y? > 4 which we rewrite as
22 +y? —4 > 0. The points which satisfy 2% 4+ y?> —4 = 0 form our friendly circle z2 + y? = 4.
Using test points (0,0) and (0, 3) we find that our solution comprises the region outside the
circle. As far as the circle itself, the point (0,2) satisfies the inequality, so the circle itself
is part of the solution set. Moving to the inequality 2 — 2z + %> — 2y < 0, we start with
22 — 22+ y% — 2y = 0. Completing the squares, we obtain (z — 1)? 4 (y — 1)2 = 2, which is
a circle centered at (1,1) with a radius of v/2. Choosing (1,1) to represent the inside of the
circle, (1,3) as a point outside of the circle and (0,0) as a point on the circle, we find that
the solution to the inequality is the inside of the circle, including the circle itself. Our final
answer, then, consists of the points on or outside of the circle 22 4+ y?> = 4 which lie on or
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inside the circle (z —1)? + (y — 1)? = 2. To produce the most accurate graph, we need to find
where these circles intersect. To that end, we solve the system

(E1) ?+y? = 4
(E2) 2?2 —-22+y*> -2y = 0

We can eliminate both the 22 and 3? by replacing E2 with —E1 + E2. Doing so produces
—2x — 2y = —4. Solving this for y, we get y = 2 — . Substituting this into F1 gives
22 4+ (2 — x)? = 4 which simplifies to 2 + 4 — 4z + 22 = 4 or 22? — 4z = 0. Factoring yields
2x(x — 2) which gives z = 0 or z = 2. Substituting these values into y = 2 — x gives the
points (0,2) and (2,0). The intermediate graphs and final solution are below.

y
34
2-\
=

—14

—24

—31

2 4+y? >4 2?22 +y? -2y <0 Solution to the system.
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8.7.1 EXERCISES

In Exercises 1 - 6, solve the given system of nonlinear equations. Sketch the graph of both equations
on the same set of axes to verify the solution set.

) 22—y = 4 5 2 +y? = 4 3 2?2 +y? = 16
) 224y = 4 ' 22—y =5 1622 +4y> = 64
2?4y = 16 2 +y? = 16 2 +y? = 16
2 1@.2 5. 1.2 1.2 _ 6. o
9x 16y = 144 gy - = 1 r—y = 2

In Exercises 9 - 15, solve the given system of nonlinear equations. Use a graph to help you avoid
any potential extraneous solutions.

7{:52—3/2:1 S{W—yzo 9{$+292:2

>4y = 4 2?4y = 4 2+ 4y = 4
o2 .2 2., .2 _ 2., .2 _
10. (x 22) —|—y2 - 1 TR —i—_y - 25 19. , a:_—i—y2 - 25
r* + 4yt = 4 y—x = 1 4+ (y—3) = 10
2, .2
13. { s 14. { LW 150 42-9y = 0
vy = y - = 32— 162 = 0

16. A certain bacteria culture follows the Law of Uninbited Growth, Equation 6.4. After 10
minutes, there are 10,000 bacteria. Five minutes later, there are 14,000 bacteria. How many
bacteria were present initially? How long before there are 50,000 bacteria?

Consider the system of nonlinear equations below

4 3
il _ 1
r oy
3 2
242 =
r Yy
If we let u = % and v = i then the system becomes
du+3v = 1
Ju+2v = -1
This associated system of linear equations can then be solved using any of the techniques presented
earlier in the chapter to find that u = —5 and v = 7. Thus z = % = —% and y = % = %

We say that the original system is linear in form because its equations are not linear but a few
substitutions reveal a structure that we can treat like a system of linear equations. Each system in
Exercises 17 - 19 is linear in form. Make the appropriate substitutions and solve for x and y.
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3
17 { 4dx° + 3,/y

1 g At 43 = 1
30° +2,/y '

-1 3e" +27Y = -1

20. Solve the following system

2 + \/y + logy(2)
322 — 2/y + 2logy(2) =
—52% + 3,/y + 4logy(2) =

In Exercises 21 - 26, sketch the solution to each system of nonlinear inequalities in the plane.

13

1. {

41n(z) + 3y?
31n(z) + 2y>

91 22—y < 1 99 2?2 +y? < 25
| 2?4+ > 4 Tl 2?2+ (y—3)2 > 10
—9)2 2 2
93, (x 22) +y2 < 1 oy U > 10:63 x
e 44yt < 4 y < x° + 8
T4+ 297 > 2 2?2 +y? > 25
25. { 2+ d? < 4 26. { y—z < 1
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27. Systems of nonlinear equations show up in third semester Calculus in the midst of some really
cool problems. The system below came from a problem in which we were asked to find the
dimensions of a rectangular box with a volume of 1000 cubic inches that has minimal surface
area. The variables x, y and z are the dimensions of the box and A is called a Lagrange
multiplier. With the help of your classmates, solve the system.’

2042z = Ayz
204+ 2z = Az
204+2x = Axy

zyz = 1000

28. According to Theorem 3.16 in Section 3.4, the polynomial p(z) = x* +4 can be factored into
the product linear and irreducible quadratic factors. In this exercise, we present a method

for obtaining that factorization.

(a) Show that p has no real zeros.

(b) Because p has no real zeros, its factorization must be of the form (224 az+b)(x?+cx+d)
where each factor is an irreducible quadratic. Expand this quantity and gather like terms

together.

(c) Create and solve the system of nonlinear equations which results from equating the
coefficients of the expansion found above with those of z* + 4. You should get four
equations in the four unknowns a, b, ¢ and d. Write p(z) in factored form.

29. Factor q(x) = 2% + 622 — 52 + 6.

SIf using \ bothers you, change it to w when you solve the system.
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8.7.2 ANSWERS

1. (£2,0), (£v3,-1) 2. No solution
)

4. (£4,0)

7. (i%@,i%) 8. (0,1) 9. (0,41), (2,0)

10. (%,i% 11. (3,4), (—4,-3) 12. (£3,4)

13. (—4,-56), (1,9), (2,16) 14. (-2,2), (2,-2) 15. (3,4)

16. Initially, there are 252800 ~ 5102 bacteria. It will take 511;1((?%)5 ) ~ 33.92 minutes for the colony

to grow to 50,000 bacteria.
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17. (—\3/5, 49) 18. No solution

20. (1,4,8), (—1,4,8)

2 2
-y <
21'{x2+4y2 > 4

—_

23‘{(30—2)2-|-y2 < 1 24‘{y > 10z — 22

2
25'{ T+ 2y* > 2 25

2+ 47 < 4

[\)
D
—N

8

)

+

<

)

IN IV

y—x

27. 2 =10, y =10, z=10,A = 2
28. (¢) o' +4= (2" -2z +2)(2* + 22+ 2)
29. 2* + 622 — 52+ 6= (22 —x+ 1) (22 + 2 +6)
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