
598 Systems of Equations and Matrices

8.4 Systems of Linear Equations: Matrix Inverses

We concluded Section 8.3 by showing how we can rewrite a system of linear equations as the matrix
equation AX = B where A and B are known matrices and the solution matrix X of the equation
corresponds to the solution of the system. In this section, we develop the method for solving such
an equation. To that end, consider the system

{
2x− 3y = 16
3x+ 4y = 7

To write this as a matrix equation, we follow the procedure outlined on page 590. We find the
coefficient matrix A, the unknowns matrix X and constant matrix B to be

A =

[
2 −3
3 4

]
X =

[
x
y

]
B =

[
16
7

]

In order to motivate how we solve a matrix equation like AX = B, we revisit solving a similar
equation involving real numbers. Consider the equation 3x = 5. To solve, we simply divide both
sides by 3 and obtain x = 5

3 . How can we go about defining an analogous process for matrices?
To answer this question, we solve 3x = 5 again, but this time, we pay attention to the properties
of real numbers being used at each step. Recall that dividing by 3 is the same as multiplying by
1
3 = 3−1, the so-called multiplicative inverse1 of 3.

3x = 5
3−1(3x) = 3−1(5) Multiply by the (multiplicative) inverse of 3(

3−1 · 3)x = 3−1(5) Associative property of multiplication
1 · x = 3−1(5) Inverse property

x = 3−1(5) Multiplicative Identity

If we wish to check our answer, we substitute x = 3−1(5) into the original equation

3x
?
= 5

3
(
3−1(5)

) ?
= 5(

3 · 3−1
)
(5)

?
= 5 Associative property of multiplication

1 · 5 ?
= 5 Inverse property

5
�
= 5 Multiplicative Identity

Thinking back to Theorem 8.5, we know that matrix multiplication enjoys both an associative
property and a multiplicative identity. What’s missing from the mix is a multiplicative inverse for
the coefficient matrix A. Assuming we can find such a beast, we can mimic our solution (and check)
to 3x = 5 as follows

1Every nonzero real number a has a multiplicative inverse, denoted a−1, such that a−1 · a = a · a−1 = 1.
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8.4 Systems of Linear Equations: Matrix Inverses 599

Solving AX = B Checking our answer

AX = B
A−1(AX) = A−1B(
A−1A

)
X = A−1B

I2X = A−1B
X = A−1B

AX
?
= B

A
(
A−1B

) ?
= B(

AA−1
)
B

?
= B

I2B
?
= B

B
�
= B

The matrix A−1 is read ‘A-inverse’ and we will define it formally later in the section. At this stage,
we have no idea if such a matrix A−1 exists, but that won’t deter us from trying to find it.2 We
want A−1 to satisfy two equations, A−1A = I2 and AA−1 = I2, making A−1 necessarily a 2 × 2
matrix.3 Hence, we assume A−1 has the form

A−1 =

[
x1 x2

x3 x4

]

for real numbers x1, x2, x3 and x4. For reasons which will become clear later, we focus our attention
on the equation AA−1 = I2. We have

AA−1 = I2[
2 −3
3 4

] [
x1 x2

x3 x4

]
=

[
1 0
0 1

]
[
2x1 − 3x3 2x2 − 3x4

3x1 + 4x3 3x2 + 4x4

]
=

[
1 0
0 1

]

This gives rise to two more systems of equations

{
2x1 − 3x3 = 1
3x1 + 4x3 = 0

{
2x2 − 3x4 = 0
3x2 + 4x4 = 1

At this point, it may seem absurd to continue with this venture. After all, the intent was to solve
one system of equations, and in doing so, we have produced two more to solve. Remember, the
objective of this discussion is to develop a general method which, when used in the correct scenarios,
allows us to do far more than just solve a system of equations. If we set about to solve these systems
using augmented matrices using the techniques in Section 8.2, we see that not only do both systems
have the same coefficient matrix, this coefficient matrix is none other than the matrix A itself. (We
will come back to this observation in a moment.)

2Much like Carl’s quest to find Sasquatch.
3Since matrix multiplication isn’t necessarily commutative, at this stage, these are two different equations.
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600 Systems of Equations and Matrices

{
2x1 − 3x3 = 1
3x1 + 4x3 = 0

Encode into a matrix−−−−−−−−−−−−−→
[
2 −3 1
3 4 0

]
{

2x2 − 3x4 = 0
3x2 + 4x4 = 1

Encode into a matrix−−−−−−−−−−−−−→
[
2 −3 0
3 4 1

]

To solve these two systems, we use Gauss-Jordan Elimination to put the augmented matrices into
reduced row echelon form. (We leave the details to the reader.) For the first system, we get

[
2 −3 1
3 4 0

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
1 0 4

17

0 1 − 3
17

]

which gives x1 = 4
17 and x3 = − 3

17 . To solve the second system, we use the exact same row
operations, in the same order, to put its augmented matrix into reduced row echelon form (Think
about why that works.) and we obtain

[
2 −3 0
3 4 1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
1 0 3

17

0 1 2
17

]

which means x2 =
3
17 and x4 =

2
17 . Hence,

A−1 =

[
x1 x2

x3 x4

]
=

[
4
17

3
17

− 3
17

2
17

]

We can check to see that A−1 behaves as it should by computing AA−1

AA−1 =

[
2 −3
3 4

] [
4
17

3
17

− 3
17

2
17

]
=

[
1 0
0 1

]
= I2 �

As an added bonus,

A−1A =

[
4
17

3
17

− 3
17

2
17

] [
2 −3
3 4

]
=

[
1 0
0 1

]
= I2 �

We can now return to the problem at hand. From our discussion at the beginning of the section
on page 599, we know

X = A−1B =

[
4
17

3
17

− 3
17

2
17

] [
16
7

]
=

[
5

−2
]

so that our final solution to the system is (x, y) = (5,−2).
As we mentioned, the point of this exercise was not just to solve the system of linear equations, but
to develop a general method for finding A−1. We now take a step back and analyze the foregoing
discussion in a more general context. In solving for A−1, we used two augmented matrices, both of
which contained the same entries as A
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8.4 Systems of Linear Equations: Matrix Inverses 601

[
2 −3 1
3 4 0

]
=

[
A

1
0

]
[
2 −3 0
3 4 1

]
=

[
A

0
1

]

We also note that the reduced row echelon forms of these augmented matrices can be written as[
1 0 4

17

0 1 − 3
17

]
=

[
I2

x1

x3

]
[

1 0 3
17

0 1 2
17

]
=

[
I2

x2

x4

]

where we have identified the entries to the left of the vertical bar as the identity I2 and the entries
to the right of the vertical bar as the solutions to our systems. The long and short of the solution
process can be summarized as

[
A

1
0

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x1

x3

]
[
A

0
1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x2

x4

]

Since the row operations for both processes are the same, all of the arithmetic on the left hand side
of the vertical bar is identical in both problems. The only difference between the two processes is
what happens to the constants to the right of the vertical bar. As long as we keep these separated
into columns, we can combine our efforts into one ‘super-sized’ augmented matrix and describe the
above process as

[
A

1 0
0 1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x1 x2

x3 x4

]

We have the identity matrix I2 appearing as the right hand side of the first super-sized augmented
matrix and the left hand side of the second super-sized augmented matrix. To our surprise and
delight, the elements on the right hand side of the second super-sized augmented matrix are none
other than those which comprise A−1. Hence, we have

[
A I2

] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→ [
I2 A−1

]
In other words, the process of finding A−1 for a matrix A can be viewed as performing a series of
row operations which transform A into the identity matrix of the same dimension. We can view
this process as follows. In trying to find A−1, we are trying to ‘undo’ multiplication by the matrix
A. The identity matrix in the super-sized augmented matrix [A|I] keeps a running memory of all
of the moves required to ‘undo’ A. This results in exactly what we want, A−1. We are now ready
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602 Systems of Equations and Matrices

to formalize and generalize the foregoing discussion. We begin with the formal definition of an
invertible matrix.

Definition 8.11. An n×n matrix A is said to be invertible if there exists a matrix A−1, read
‘A inverse’, such that A−1A = AA−1 = In.

Note that, as a consequence of our definition, invertible matrices are square, and as such, the
conditions in Definition 8.11 force the matrix A−1 to be same dimensions as A, that is, n × n.
Since not all matrices are square, not all matrices are invertible. However, just because a matrix is
square doesn’t guarantee it is invertible. (See the exercises.) Our first result summarizes some of
the important characteristics of invertible matrices and their inverses.

Theorem 8.6. Suppose A is an n× n matrix.

1. If A is invertible then A−1 is unique.

2. A is invertible if and only if AX = B has a unique solution for every n× r matrix B.

The proofs of the properties in Theorem 8.6 rely on a healthy mix of definition and matrix arith-
metic. To establish the first property, we assume that A is invertible and suppose the matrices B and
C act as inverses for A. That is, BA = AB = In and CA = AC = In. We need to show that B and
C are, in fact, the same matrix. To see this, we note that B = InB = (CA)B = C(AB) = CIn = C.
Hence, any two matrices that act like A−1 are, in fact, the same matrix.4 To prove the second
property of Theorem 8.6, we note that if A is invertible then the discussion on page 599 shows
the solution to AX = B to be X = A−1B, and since A−1 is unique, so is A−1B. Conversely, if
AX = B has a unique solution for every n × r matrix B, then, in particular, there is a unique
solution X0 to the equation AX = In. The solution matrix X0 is our candidate for A−1. We
have AX0 = In by definition, but we need to also show X0A = In. To that end, we note that
A (X0A) = (AX0)A = InA = A. In other words, the matrix X0A is a solution to the equation
AX = A. Clearly, X = In is also a solution to the equation AX = A, and since we are assuming ev-
ery such equation as a unique solution, we must have X0A = In. Hence, we have X0A = AX0 = In,
so that X0 = A−1 and A is invertible. The foregoing discussion justifies our quest to find A−1 using
our super-sized augmented matrix approach

[
A In

] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→ [
In A−1

]
We are, in essence, trying to find the unique solution to the equation AX = In using row operations.

What does all of this mean for a system of linear equations? Theorem 8.6 tells us that if we write
the system in the form AX = B, then if the coefficient matrix A is invertible, there is only one
solution to the system − that is, if A is invertible, the system is consistent and independent.5 We
also know that the process by which we find A−1 is determined completely by A, and not by the

4If this proof sounds familiar, it should. See the discussion following Theorem 5.2 on page 380.
5It can be shown that a matrix is invertible if and only if when it serves as a coefficient matrix for a system of

equations, the system is always consistent independent. It amounts to the second property in Theorem 8.6 where
the matrices B are restricted to being n× 1 matrices. We note that, owing to how matrix multiplication is defined,
being able to find unique solutions to AX = B for n× 1 matrices B gives you the same statement about solving such
equations for n× r matrices − since we can find a unique solution to them one column at a time.
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8.4 Systems of Linear Equations: Matrix Inverses 603

constants in B. This answers the question as to why we would bother doing row operations on
a super-sized augmented matrix to find A−1 instead of an ordinary augmented matrix to solve a
system; by finding A−1 we have done all of the row operations we ever need to do, once and for all,
since we can quickly solve any equation AX = B using one multiplication, A−1B.

Example 8.4.1. Let A =

⎡
⎣ 3 1 2

0 −1 5
2 1 4

⎤
⎦

1. Use row operations to find A−1. Check your answer by finding A−1A and AA−1.

2. Use A−1 to solve the following systems of equations

(a)

⎧⎨
⎩

3x+ y + 2z = 26
−y + 5z = 39

2x+ y + 4z = 117
(b)

⎧⎨
⎩

3x+ y + 2z = 4
−y + 5z = 2

2x+ y + 4z = 5
(c)

⎧⎨
⎩

3x+ y + 2z = 1
−y + 5z = 0

2x+ y + 4z = 0

Solution.

1. We begin with a super-sized augmented matrix and proceed with Gauss-Jordan elimination.

⎡
⎣ 3 1 2 1 0 0

0 −1 5 0 1 0
2 1 4 0 0 1

⎤
⎦ Replace R1−−−−−−−→

with 1
3
R1

⎡
⎣ 1 1

3
2
3

1
3 0 0

0 −1 5 0 1 0
2 1 4 0 0 1

⎤
⎦

⎡
⎣ 1 1

3
2
3

1
3 0 0

0 −1 5 0 1 0
2 1 4 0 0 1

⎤
⎦ Replace R3 with−−−−−−−−−−→

−2R1 +R3

⎡
⎣ 1 1

3
2
3

1
3 0 0

0 −1 5 0 1 0
0 1

3
8
3 −2

3 0 1

⎤
⎦

⎡
⎣ 1 1

3
2
3

1
3 0 0

0 −1 5 0 1 0
0 1

3
8
3 −2

3 0 1

⎤
⎦ Replace R2−−−−−−−−→

with (−1)R2

⎡
⎣ 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 1

3
8
3 −2

3 0 1

⎤
⎦

⎡
⎣ 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 1

3
8
3 −2

3 0 1

⎤
⎦ Replace R3 with−−−−−−−−−−→

− 1
3
R2 +R3

⎡
⎣ 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 13

3 −2
3

1
3 1

⎤
⎦

⎡
⎣ 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 13

3 −2
3

1
3 1

⎤
⎦ Replace R3−−−−−−−→

with 3
13

R3

⎡
⎣ 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 1 − 2

13
1
13

3
13

⎤
⎦

⎡
⎣ 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 1 − 2

13
1
13

3
13

⎤
⎦

Replace R1 with

− 2
3
R3 +R1−−−−−−−−−−−−→

Replace R2 with

5R3 +R2

⎡
⎢⎣

1 1
3 0 17

39 − 2
39 − 2

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13

⎤
⎥⎦
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604 Systems of Equations and Matrices

⎡
⎢⎣

1 1
3 0 17

39 − 2
39 − 2

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13

⎤
⎥⎦ Replace R1 with−−−−−−−−−−→

− 1
3
R2 +R1

⎡
⎢⎣

1 0 0 9
13

2
13 − 7

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13

⎤
⎥⎦

We find A−1 =

⎡
⎢⎣

9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

⎤
⎥⎦. To check our answer, we compute

A−1A =

⎡
⎢⎣

9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

⎤
⎥⎦
⎡
⎢⎣

3 1 2

0 −1 5

2 1 4

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ = I3 �

and

AA−1 =

⎡
⎢⎣

3 1 2

0 −1 5

2 1 4

⎤
⎥⎦
⎡
⎢⎣

9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ = I3 �

2. Each of the systems in this part has A as its coefficient matrix. The only difference between
the systems is the constants which is the matrix B in the associated matrix equation AX = B.
We solve each of them using the formula X = A−1B.

(a) X = A−1B =

⎡
⎢⎣

9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

⎤
⎥⎦
⎡
⎢⎣

26

39

117

⎤
⎥⎦ =

⎡
⎢⎣
−39
91

26

⎤
⎥⎦. Our solution is (−39, 91, 26).

(b) X = A−1B =

⎡
⎢⎣

9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

⎤
⎥⎦
⎡
⎢⎣

4

2

5

⎤
⎥⎦ =

⎡
⎢⎣

5
13
19
13
9
13

⎤
⎥⎦. We get

(
5
13 ,

19
13 ,

9
13

)
.

(c) X = A−1B =

⎡
⎢⎣

9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

⎤
⎥⎦
⎡
⎢⎣

1

0

0

⎤
⎥⎦ =

⎡
⎢⎣

9
13

−10
13

− 2
13

⎤
⎥⎦. We find

(
9
13 ,−10

13 ,− 2
13

)
.6

In Example 8.4.1, we see that finding one inverse matrix can enable us to solve an entire family
of systems of linear equations. There are many examples of where this comes in handy ‘in the
wild’, and we chose our example for this section from the field of electronics. We also take this
opportunity to introduce the student to how we can compute inverse matrices using the calculator.

6Note that the solution is the first column of the A−1. The reader is encouraged to meditate on this ‘coincidence’.
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8.4 Systems of Linear Equations: Matrix Inverses 605

Example 8.4.2. Consider the circuit diagram below.7 We have two batteries with source voltages
VB1 and VB2, measured in volts V , along with six resistors with resistances R1 through R6, measured
in kiloohms, kΩ. Using Ohm’s Law and Kirchhoff’s Voltage Law, we can relate the voltage supplied
to the circuit by the two batteries to the voltage drops across the six resistors in order to find the
four ‘mesh’ currents: i1, i2, i3 and i4, measured in milliamps, mA. If we think of electrons flowing
through the circuit, we can think of the voltage sources as providing the ‘push’ which makes the
electrons move, the resistors as obstacles for the electrons to overcome, and the mesh current as a
net rate of flow of electrons around the indicated loops.

VB1

R5

R1 R2 R6

VB2R3 R4i1 i2 i3

i4

The system of linear equations associated with this circuit is⎧⎪⎪⎨
⎪⎪⎩

(R1 +R3) i1 −R3i2 −R1i4 = VB1

−R3i1 + (R2 +R3 +R4) i2 −R4i3 −R2i4 = 0
−R4i2 + (R4 +R6) i3 −R6i4 = −VB2

−R1i1 −R2i2 −R6i3 + (R1 +R2 +R5 +R6) i4 = 0

1. Assuming the resistances are all 1kΩ, find the mesh currents if the battery voltages are

(a) VB1 = 10V and VB2 = 5V

(b) VB1 = 10V and VB2 = 0V

(c) VB1 = 0V and VB2 = 10V

(d) VB1 = 10V and VB2 = 10V

2. Assuming VB1 = 10V and VB2 = 5V , find the possible combinations of resistances which
would yield the mesh currents you found in 1(a).

7The authors wish to thank Don Anthan of Lakeland Community College for the design of this example.
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Solution.

1. Substituting the resistance values into our system of equations, we get

⎧⎪⎪⎨
⎪⎪⎩

2i1 − i2 − i4 = VB1

−i1 + 3i2 − i3 − i4 = 0
−i2 + 2i3 − i4 = −VB2

−i1 − i2 − i3 + 4i4 = 0

This corresponds to the matrix equation AX = B where

A =

⎡
⎢⎢⎣

2 −1 0 −1
−1 3 −1 −1
0 −1 2 −1

−1 −1 −1 4

⎤
⎥⎥⎦ X =

⎡
⎢⎢⎣

i1
i2
i3
i4

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

VB1

0
−VB2

0

⎤
⎥⎥⎦

When we input the matrix A into the calculator, we find

from which we have A−1 =

⎡
⎢⎢⎣

1.625 1.25 1.125 1
1.25 1.5 1.25 1

1.125 1.25 1.625 1
1 1 1 1

⎤
⎥⎥⎦.

To solve the four systems given to us, we find X = A−1B where the value of B is determined
by the given values of VB1 and VB2

1 (a) B =

⎡
⎢⎢⎣

10
0

−5
0

⎤
⎥⎥⎦ , 1 (b) B =

⎡
⎢⎢⎣

10
0
0
0

⎤
⎥⎥⎦ , 1 (c) B =

⎡
⎢⎢⎣

0
0

−10
0

⎤
⎥⎥⎦ , 1 (d) B =

⎡
⎢⎢⎣

10
0
10
0

⎤
⎥⎥⎦

(a) For VB1 = 10V and VB2 = 5V , the calculator gives i1 = 10.625 mA, i2 = 6.25 mA,
i3 = 3.125 mA, and i4 = 5 mA. We include a calculator screenshot below for this part
(and this part only!) for reference.
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8.4 Systems of Linear Equations: Matrix Inverses 607

(b) By keeping VB1 = 10V and setting VB2 = 0V , we are removing the effect of the second
battery. We get i1 = 16.25 mA, i2 = 12.5 mA, i3 = 11.25 mA, and i4 = 10 mA.

(c) Part (c) is a symmetric situation to part (b) in so much as we are zeroing out VB1 and
making VB2 = 10. We find i1 = −11.25 mA, i2 = −12.5 mA, i3 = −16.25 mA, and
i4 = −10 mA, where the negatives indicate that the current is flowing in the opposite
direction as is indicated on the diagram. The reader is encouraged to study the symmetry
here, and if need be, hold up a mirror to the diagram to literally ‘see’ what is happening.

(d) For VB1 = 10V and VB2 = 10V , we get i1 = 5 mA, i2 = 0 mA, i3 = −5 mA, and
i4 = 0 mA. The mesh currents i2 and i4 being zero is a consequence of both batteries
‘pushing’ in equal but opposite directions, causing the net flow of electrons in these two
regions to cancel out.

2. We now turn the tables and are given VB1 = 10V , VB2 = 5V , i1 = 10.625 mA, i2 = 6.25 mA,
i3 = 3.125 mA and i4 = 5 mA and our unknowns are the resistance values. Rewriting our
system of equations, we get

⎧⎪⎪⎨
⎪⎪⎩

5.625R1 + 4.375R3 = 10
1.25R2 − 4.375R3 + 3.125R4 = 0

−3.125R4 − 1.875R6 = −5
−5.625R1 − 1.25R2 + 5R5 + 1.875R6 = 0

The coefficient matrix for this system is 4× 6 (4 equations with 6 unknowns) and is therefore
not invertible. We do know, however, this system is consistent, since setting all the resis-
tance values equal to 1 corresponds to our situation in problem 1a. This means we have an
underdetermined consistent system which is necessarily dependent. To solve this system, we
encode it into an augmented matrix

⎡
⎢⎢⎣

5.25 0 4.375 0 0 0 10
0 1.25 −4.375 3.125 0 0 0
0 0 0 −3.125 0 −1.875 −5

−5.625 −1.25 0 0 5 1.875 0

⎤
⎥⎥⎦

and use the calculator to write in reduced row echelon form
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608 Systems of Equations and Matrices

⎡
⎢⎢⎣

1 0 0.7 0 0 0 1.7
0 1 −3.5 0 0 −1.5 −4
0 0 0 1 0 0.6 1.6
0 0 0 0 1 0 1

⎤
⎥⎥⎦

Decoding this system from the matrix, we get⎧⎪⎪⎨
⎪⎪⎩

R1 + 0.7R3 = 1.7
R2 − 3.5R3 − 1.5R6 = −4

R4 + 0.6R6 = 1.6
R5 = 1

We have can solve for R1, R2, R4 and R5 leaving R3 and R6 as free variables. Labeling
R3 = s and R6 = t, we have R1 = −0.7s + 1.7, R2 = 3.5s + 1.5t − 4, R4 = −0.6t + 1.6
and R5 = 1. Since resistance values are always positive, we need to restrict our values of
s and t. We know R3 = s > 0 and when we combine that with R1 = −0.7s + 1.7 > 0,
we get 0 < s < 16

7 . Similarly, R6 = t > 0 and with R4 = −0.6t + 1.6 > 0, we find
0 < t < 8

3 . In order visualize the inequality R2 = 3.5s + 1.5t − 4 > 0, we graph the
line 3.5s + 1.5t − 4 = 0 on the st-plane and shade accordingly.8 Imposing the additional
conditions 0 < s < 16

7 and 0 < t < 8
3 , we find our values of s and t restricted to the region

depicted on the right. Using the roster method, the values of s and t are pulled from the region{
(s, t) : 0 < s < 16

7 , 0 < t < 8
3 , 3.5s+ 1.5t− 4 > 0

}
. The reader is encouraged to check that

the solution presented in 1(a), namely all resistance values equal to 1, corresponds to a pair
(s, t) in the region.

t

s

−2 −1 1 2 4

−1

1

2

3

The region where 3.5s+ 1.5t− 4 > 0

t

s

t = 8
3

s = 16
7

−2 −1 1 2 4

−1

1

2

3

The region for our parameters s and t.

8See Section 2.4 for a review of this procedure.
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8.4 Systems of Linear Equations: Matrix Inverses 609

8.4.1 Exercises

In Exercises 1 - 8, find the inverse of the matrix or state that the matrix is not invertible.

1. A =

[
1 2
3 4

]
2. B =

[
12 −7
−5 3

]

3. C =

[
6 15
14 35

]
4. D =

[
2 −1

16 −9
]

5. E =

⎡
⎣ 3 0 4

2 −1 3
−3 2 −5

⎤
⎦ 6. F =

⎡
⎣ 4 6 −3

3 4 −3
1 2 6

⎤
⎦

7. G =

⎡
⎣ 1 2 3

2 3 11
3 4 19

⎤
⎦

8. H =

⎡
⎢⎢⎣

1 0 −3 0
2 −2 8 7

−5 0 16 0
1 0 4 1

⎤
⎥⎥⎦

In Exercises 9 - 11, use one matrix inverse to solve the following systems of linear equations.

9.

{
3x+ 7y = 26

5x+ 12y = 39
10.

{
3x+ 7y = 0
5x+ 12y = −1 11.

{
3x+ 7y = −7
5x+ 12y = 5

In Exercises 12 - 14, use the inverse of E from Exercise 5 above to solve the following systems of
linear equations.

12.

⎧⎨
⎩

3x+ 4z = 1
2x− y + 3z = 0

−3x+ 2y − 5z = 0
13.

⎧⎨
⎩

3x+ 4z = 0
2x− y + 3z = 1

−3x+ 2y − 5z = 0
14.

⎧⎨
⎩

3x+ 4z = 0
2x− y + 3z = 0

−3x+ 2y − 5z = 1

15. This exercise is a continuation of Example 8.3.3 in Section 8.3 and gives another application
of matrix inverses. Recall that given the position matrix P for a point in the plane, the
matrix RP corresponds to a point rotated 45◦ counterclockwise from P where

R =

[ √
2
2 −

√
2
2√

2
2

√
2
2

]

(a) Find R−1.

(b) If RP rotates a point counterclockwise 45◦, what should R−1P do? Check your answer
by finding R−1P for various points on the coordinate axes and the lines y = ±x.

(c) Find R−1P where P corresponds to a generic point P (x, y). Verify that this takes points
on the curve y = 2

x to points on the curve x2 − y2 = 4.
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610 Systems of Equations and Matrices

16. A Sasquatch’s diet consists of three primary foods: Ippizuti Fish, Misty Mushrooms, and Sun
Berries. Each serving of Ippizuti Fish is 500 calories, contains 40 grams of protein, and has
no Vitamin X. Each serving of Misty Mushrooms is 50 calories, contains 1 gram of protein,
and 5 milligrams of Vitamin X. Finally, each serving of Sun Berries is 80 calories, contains
no protein, but has 15 milligrams of Vitamin X.9

(a) If an adult male Sasquatch requires 3200 calories, 130 grams of protein, and 275 mil-
ligrams of Vitamin X daily, use a matrix inverse to find how many servings each of
Ippizuti Fish, Misty Mushrooms, and Sun Berries he needs to eat each day.

(b) An adult female Sasquatch requires 3100 calories, 120 grams of protein, and 300 mil-
ligrams of Vitamin X daily. Use the matrix inverse you found in part (a) to find how
many servings each of Ippizuti Fish, Misty Mushrooms, and Sun Berries she needs to
eat each day.

(c) An adolescent Sasquatch requires 5000 calories, 400 grams of protein daily, but no Vita-
min X daily.10 Use the matrix inverse you found in part (a) to find how many servings
each of Ippizuti Fish, Misty Mushrooms, and Sun Berries she needs to eat each day.

17. Matrices can be used in cryptography. Suppose we wish to encode the message ‘BIGFOOT
LIVES’. We start by assigning a number to each letter of the alphabet, say A = 1, B = 2 and
so on. We reserve 0 to act as a space. Hence, our message ‘BIGFOOT LIVES’ corresponds
to the string of numbers ‘2, 9, 7, 6, 15, 15, 20, 0, 12, 9, 22, 5, 19.’ To encode this message,
we use an invertible matrix. Any invertible matrix will do, but for this exercise, we choose

A =

⎡
⎣ 2 −3 5

3 1 −2
−7 1 −1

⎤
⎦

Since A is 3 × 3 matrix, we encode our message string into a matrix M with 3 rows. To do
this, we take the first three numbers, 2 9 7, and make them our first column, the next three
numbers, 6 15 15, and make them our second column, and so on. We put 0’s to round out
the matrix.

M =

⎡
⎣ 2 6 20 9 19

9 15 0 22 0
7 15 12 5 0

⎤
⎦

To encode the message, we find the product AM

AM =

⎡
⎣ 2 −3 5

3 1 −2
−7 1 −1

⎤
⎦
⎡
⎣ 2 6 20 9 19

9 15 0 22 0
7 15 12 5 0

⎤
⎦ =

⎡
⎣ 12 42 100 −23 38

1 3 36 39 57
−12 −42 −152 −46 −133

⎤
⎦

9Misty Mushrooms and Sun Berries are the only known fictional sources of Vitamin X.
10Vitamin X is needed to sustain Sasquatch longevity only.
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8.4 Systems of Linear Equations: Matrix Inverses 611

So our coded message is ‘12, 1, −12, 42, 3, −42, 100, 36, −152, −23, 39, −46, 38, 57, −133.’
To decode this message, we start with this string of numbers, construct a message matrix as
we did earlier (we should get the matrix AM again) and then multiply by A−1.

(a) Find A−1.

(b) Use A−1 to decode the message and check this method actually works.

(c) Decode the message ‘14, 37, −76, 128, 21, −151, 31, 65, −140’
(d) Choose another invertible matrix and encode and decode your own messages.

18. Using the matrices A from Exercise 1, B from Exercise 2 and D from Exercise 4, show
AB = D and D−1 = B−1A−1. That is, show that (AB)−1 = B−1A−1.

19. Let M and N be invertible n × n matrices. Show that (MN)−1 = N−1M−1 and compare
your work to Exercise 31 in Section 5.2.
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612 Systems of Equations and Matrices

8.4.2 Answers

1. A−1 =

[
−2 1

3
2 −1

2

]
2. B−1 =

[
3 7
5 12

]

3. C is not invertible 4. D−1 =

[
9
2 −1

2
8 −1

]

5. E−1 =

⎡
⎣ −1 8 4

1 −3 −1
1 −6 −3

⎤
⎦ 6. F−1 =

⎡
⎢⎣
−5

2
7
2

1
2

7
4 −9

4 −1
4

−1
6

1
6

1
6

⎤
⎥⎦

7. G is not invertible 8. H−1 =

⎡
⎢⎢⎢⎣

16 0 3 0

−90 −1
2 −35

2
7
2

5 0 1 0

−36 0 −7 1

⎤
⎥⎥⎥⎦

The coefficient matrix is B−1 from Exercise 2 above so the inverse we need is (B−1)−1 = B.

9.

[
12 −7
−5 3

] [
26
39

]
=

[
39

−13
]

So x = 39 and y = −13.

10.

[
12 −7
−5 3

] [
0

−1
]
=

[
7

−3
]

So x = 7 and y = −3.

11.

[
12 −7
−5 3

] [ −7
5

]
=

[ −119
50

]
So x = −119 and y = 50.

The coefficient matrix is E =

⎡
⎣ 3 0 4

2 −1 3
−3 2 −5

⎤
⎦ from Exercise 5, so E−1 =

⎡
⎣ −1 8 4

1 −3 −1
1 −6 −3

⎤
⎦

12.

⎡
⎣ −1 8 4

1 −3 −1
1 −6 −3

⎤
⎦
⎡
⎣ 1

0
0

⎤
⎦ =

⎡
⎣ −1

1
1

⎤
⎦ So x = −1, y = 1 and z = 1.

13.

⎡
⎣ −1 8 4

1 −3 −1
1 −6 −3

⎤
⎦
⎡
⎣ 0

1
0

⎤
⎦ =

⎡
⎣ 8
−3
−6

⎤
⎦ So x = 8, y = −3 and z = −6.

14.

⎡
⎣ −1 8 4

1 −3 −1
1 −6 −3

⎤
⎦
⎡
⎣ 0

0
1

⎤
⎦ =

⎡
⎣ 4
−1
−3

⎤
⎦ So x = 4, y = −1 and z = −3.
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8.4 Systems of Linear Equations: Matrix Inverses 613

16. (a) The adult male Sasquatch needs: 3 servings of Ippizuti Fish, 10 servings of Misty Mush-
rooms, and 15 servings of Sun Berries daily.

(b) The adult female Sasquatch needs: 3 servings of Ippizuti Fish and 20 servings of Sun
Berries daily. (No Misty Mushrooms are needed!)

(c) The adolescent Sasquatch requires 10 servings of Ippizuti Fish daily. (No Misty Mush-
rooms or Sun Berries are needed!)

17. (a) A−1 =

⎡
⎣ 1 2 1

17 33 19
10 19 11

⎤
⎦

(b)

⎡
⎣ 1 2 1

17 33 19
10 19 11

⎤
⎦
⎡
⎣ 12 42 100 −23 38

1 3 36 39 57
−12 −42 −152 −46 −133

⎤
⎦ =

⎡
⎣ 2 6 20 9 19

9 15 0 22 0
7 15 12 5 0

⎤
⎦ �

(c) ‘LOGS RULE’
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8.5 Determinants and Cramer’s Rule

8.5.1 Definition and Properties of the Determinant

In this section we assign to each square matrix A a real number, called the determinant of A,
which will eventually lead us to yet another technique for solving consistent independent systems
of linear equations. The determinant is defined recursively, that is, we define it for 1× 1 matrices
and give a rule by which we can reduce determinants of n × n matrices to a sum of determinants
of (n− 1)× (n− 1) matrices.1 This means we will be able to evaluate the determinant of a 2× 2
matrix as a sum of the determinants of 1× 1 matrices; the determinant of a 3× 3 matrix as a sum
of the determinants of 2 × 2 matrices, and so forth. To explain how we will take an n × n matrix
and distill from it an (n− 1)× (n− 1), we use the following notation.

Definition 8.12. Given an n×n matrix A where n > 1, the matrix Aij is the (n− 1)× (n− 1)
matrix formed by deleting the ith row of A and the jth column of A.

For example, using the matrix A below, we find the matrix A23 by deleting the second row and
third column of A.

A =

⎡
⎣ 3 1 2

0 −1 5
2 1 4

⎤
⎦ Delete R2 and C3−−−−−−−−−−−→ A23 =

[
3 1
2 1

]

We are now in the position to define the determinant of a matrix.

Definition 8.13. Given an n× n matrix A the determinant of A, denoted det(A), is defined
as follows

• If n = 1, then A = [a11] and det(A) = det ([a11]) = a11.

• If n > 1, then A = [aij ]n×n and

det(A) = det
(
[aij ]n×n

)
= a11 det (A11)− a12 det (A12) +− . . .+ (−1)1+na1n det (A1n)

There are two commonly used notations for the determinant of a matrix A: ‘det(A)’ and ‘|A|’
We have chosen to use the notation det(A) as opposed to |A| because we find that the latter is
often confused with absolute value, especially in the context of a 1 × 1 matrix. In the expansion
a11 det (A11)−a12 det (A12)+− . . .+(−1)1+na1n det (A1n), the notation ‘+− . . .+(−1)1+na1n’ means
that the signs alternate and the final sign is dictated by the sign of the quantity (−1)1+n. Since
the entries a11, a12 and so forth up through a1n comprise the first row of A, we say we are finding
the determinant of A by ‘expanding along the first row’. Later in the section, we will develop a
formula for det(A) which allows us to find it by expanding along any row.

Applying Definition 8.13 to the matrix A =

[
4 −3
2 1

]
we get

1We will talk more about the term ‘recursively’ in Section 9.1.
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