

Chapter

7

Software

Engineering

S o f t w a r e E n g i n e e r i n g | 2

 Software engineering is the practice of applying engineering

principles to the entire project cycle of software applications. This is

best accomplished by developing and utilizing standards to

accomplish product development. Today, the term software

engineer is still not properly defined, but is generally applied to

computer programmers or those with that title and more formally or

traditionally educated, as well as people in management positions of

software projects.

 Other engineering fields (e.g. civil engineering, electrical

engineer, mechanical engineer, etc.) are far more established and the

fundamentals of which rarely change, as compared to software

engineering. Coding languages are frequently, every decade,

coming and going; ever changing to the demands of the day’s

hardware systems and customer needs.

 In the early days, when computers were first making their

way into business environments and later into peoples’ households,

software was developed and at times was not able to operate or

transfer to other systems like it can today. The difference is that there

were not many standards back then that were applied to the field of

computing to ensure application to application compatibility and

cross-platform interoperability. To address issues such as these,

several committees, groups, societies, and organizations were

created to develop widely recognized standards.

 An organization of note is IEEE (Institute of Electrical and

Electronics Engineers). It is the world’s largest professional

organization related to advancing technology. To create standards

for computing technology, the IEEE consists of and consults with

professionals in fields that may be applicable to whatever piece of

technology is being scrutinized. By acquiring input by many

individuals from different backgrounds, standards are developed to

3 | C h a p t e r 7

best fit the market. By having standards for hardware and software

components, innovation and advancement of technology is

accelerated because everyone starts with the same base components

and is able to fit their creations to similar structure, which are used

to create a more developed base for future endeavors. Without

working from the same or similar base materials, individuals and

businesses would go their own route resulting in many issues when

attempting to combine separate components or complete inability to

interact with others using completely different applications.

Software Development and

Product Life Cycle

• Planning, Defining and Analysis

• Designing, Building, and Implementation

• Testing

• Staging and Deployment

• Monitoring

Planning and Analysis

The first step of the software development cycle is the planning

and analysis phase. During this phase, requirements are gathered

from the client(customer). If there is no specific client, and a software

package is being built as a general purpose application to be used by

anyone – known as off-the-shelf software – requirements may be

thought up by the development team or by conducting one or more

studies of possible users where the product may be marketed.

S o f t w a r e E n g i n e e r i n g | 4

After needs for the project are identified, a process is started to

identify and prioritize requirements. Requirements are scrutinized

against several factors: cost, time, size, urgency(is it a want or a need)

are but a few. Once the requirements are agreed to between those

developing the software and those who are purchasing the product,

if there is a client specifically, the proposal is finalized and becomes

the fundamental outline of what the software is to be. Throughout

the project’s life cycle, however, changes may be made and often are.

For the project team to create the best product that may be

deliverable at the agreed upon price estimation and date, frequent

communication must be made between the client and development

team and any changes need to be agreed to and addressed as soon

as possible.

Designing, Building, and Implementation

 This stage consists of designing, building, and the

implementation of software and is continually evolving within the

project. Software design is the process of creating the aesthetics of

the finished product. At this stage, the software development team

will collaborate with the client to help determine where components

of the application will reside and possibly how they are accessed.

While outlining what is included in a piece of software, developers

must be sure to try to create an ergonomic feel to using the product.

The best way to do this is by talking and working with the client

before and during development, and during the testing phase.

Engineers will assess how their software program will fit into their

client’s computer ecosystem and how user will interact with it.

 When it comes to building a piece of software, details of the

client’s ecosystem will be gathered to determine how the software

will be built. Some factors that go into this are the type of computer

5 | C h a p t e r 7

systems the software will be deployed on: desktops, servers, hand-

held devices, which operating systems are running on those

computers, and which languages would be best suited for the

particular environment, and possibly the consideration of future

updates to the software. Besides which type of coding language to

use, developers must consider the security aspects of their project

and the hostility of the environment the software is being deployed

to. Knowing what the environment is going to be like before and

during the development process, will allow developers to

implement security features before encountering major

compatibility issues when combining security into the core of the

program. If utilizing any coding components that have been created

already and being repurposed, it is important to understand any

security risks that come with them.

 Implementing the components of the program into the design

is what ties everything together to create a finished product. During

development, coders will build the application’s components,

usually separately and concurrently, and implement them one at a

time. As each component is implemented into the main branch of

the program, errors may be discovered and fixed to ensure proper

integration.

S o f t w a r e E n g i n e e r i n g | 6

Testing

 After completion of a product, extraneous testing is

conducted to ensure everything is working and that the product is

acceptable for the client or consumers. Testing is done at most every

stage during the product life cycle, but more extensively during this

phase; pre-shipment. To be sure a software product will work as

desired, it is ran on multiple differing environments, if needed, and

under different conditions. Several tens or hundreds of hours will

be put into executing, running, and operating software by many

people on the development team to identify bugs for quality control.

 Even though a development team will test software for many

hours, some programs may be released as alpha and beta releases

prior to a general release. During an alpha release, software is

usually tested two different ways: white-box testing and black-box

testing. When a program is undergoing white-box testing, that

means the developers are focused on each component at the code

level – the software’s source code. They are testing each chunk of

code by running it, inputting any data or instructions that may be

required, and analyzing the output and comparing against what is

expected. While reviewing the code for errors, programmers will

also use this time to identify bottlenecks or slower operating code

and update it run more quickly and efficiently. Once completed, the

product advances to black-box testing. Here, the development team

takes it a step up and tests the software how any user is expected to

use it. While black-box testing a product, the test group may consist

of the main development team, colleagues, or a small test group

similar to how beta testing occurs. Test cases(scenarios) are created

of how users are expected to use the product and are functional in

practice.

7 | C h a p t e r 7

 When software is released for beta testing, it is near

completion and functional. Beta testing will either be released

openly or closed; meaning open to the public or closed to a select

group of people. By releasing software in a beta stage, the software

will be ran on many more different computer systems and possibly

tested in ways not thought of by the development team. Having

many more people test the product will increase chances of bugs to

surface and the development team will have an opportunity to

acquire feedback of how the software functions for its users.

Becoming a beta tester will permit early access to software and may

come with financial benefits or other perquisite sometime in the

future. Perhaps a great example is with video game software, beta

testers will acquire knowledge and skills of the game and be a step

ahead of newcomers at launch; in some cases, beta testers are

rewarded with special items or accolades when playing the final

release version.

Staging and Deployment

 Once thorough testing of a product has been completed to

satisfaction, it is released to a specific client or to an open market:

retail stores and/or online. During the prior phases, the software

development team learns about which types of systems that their

product will deploy to. When ready, the product will be package in

a way that makes it deliverable, distributable and installable for end

users. This will include packing the software into a standalone

executable or into a compressed folder, storing the package on a

media (cd, flash drive, HDD, web server, etc.), and making it

accessible to others.

 Depending on requirements set forth during the planning

phase, the project team may or may not have to deploy the software

S o f t w a r e E n g i n e e r i n g | 8

on a client’s system(s). Most larger businesses and organizations

have in-house I.T. teams to handle installation and deployment

while many smaller business and organizations will self-install or

hire someone to install the software, which may be the project team.

Monitoring

 The monitoring phase of the software development cycle

includes user support and future updates. Not all software comes

with further support and is extraneous to the other phases. During

monitoring, the development team will start back at the planning

phase and work their way through the cycle again as necessary while

working on any updates to the software. A list may be created

during the initial development process containing what additional

functionality may be included in future updates, possible

expansions into additional computer systems and operating

systems, where further review of code efficiency may be focused on,

and yet to be solved bugs/errors. While software is on the market,

feedback may be collected on how to make the software ‘better’,

additional bugs may be discovered and reported to the development

team, and more accessibility may be provided for consumers to

access it to create a larger user base.

 More often found with open source software, since the source

code is open to improvement and scrutinization by the public, are

‘nightly’ builds, because code may be updated and improved upon

at any time and by any person outside of the official development

team. Nightly builds are unofficial releases that contain recent fixes

to code to add features, functionality, or bug fixes and are considered

less stable than official releases. Though nightly builds of software

may be highly beneficial to some users, it undergoes less testing (in

general) when compared against official ‘stable’ releases. Since

9 | C h a p t e r 7

updates are applied regularly to nightly builds, code may break

(become unusable) and bug/crash occurrences may be amplified.

After several subsequent nightly builds have satisfied the

development team enough to warrant an official release, the

software will undergo a review, repackaging, and testing process

again and be released as a ‘stable’ build.

 Similar, but slightly different to nightly builds, are regular

and less frequent updates or patches to software. Software engineers

will regularly monitor and test software and apply or ‘push’ updates

to software locally and/or remotely.

Documentation

 Documentation of software is a very important component of

a software product that is quite often neglected. Major software

releases by large corporations commonly provide decent

documentation; however, not all software is released by a

corporation that has the funds and employees to create thorough

documentation. There are several different types of documentation

that ought to be created during project development and provided

for use by developers, clients/users, and anyone else who may need

to work with the software. Early on during project development are

two types of documentation: Requirements and Design

documentations. As software is developing and completed, three

more types of documentation ought to be created and accessible:

Technical, User, and Marketing documentation.

 Requirements documentation is created during the planning

and analysis phase. This documentation will gather requirements

S o f t w a r e E n g i n e e r i n g | 10

from the client or created for the expected user base who may

purchase the software as off-the-shelf software. This documentation

will be a go-to guide for the development team to determine what

will be included in the project they are working on. During the

project life cycle this document is subject to change and is rather

common; regular communication with clients is essential to ensuring

the product is developed according to wants and needs. Design

documentation will piggyback off the requirements gathering

process to assist developers in designing how the software will look

and operate. Excellent descriptors in design documentation will

explain why components will be included in the product. While

tackling what is included in software, what may also be included are

one or more examples of how not to design a component or feature.

Product development may be expedited when software engineers

are focused on how to initially design a component in a specific and

consistent way, rather than spending time trying to build it and

others using varying methodologies and approaches to problem

solving.

 Technical documentation includes comments littered

throughout the source code and compiled documents. While

creating code components of software, software engineers can insert

line comments to explain what the following code does or how it

works. Commenting in code is notorious for being neglected but is

considered good code etiquette and is very helpful to other

programmers that will likely encounter the code in the future. By

creating comments explaining how code works, other developers

will spend less time trying to understand how it works when it may

need to be updated or fixed. Sometimes code is poorly written, and

comments are negligible or nonexistent causing entire components

needing to be redone, because software engineers cannot

understand it. When being thorough while creating code, many

other people that rely on being able to read it will have an easier time

11 | C h a p t e r 7

attempting to fix it; this helps promote the concept of “pay it

forward”. Other technical documents that are provided with

software pertain to how software is to be serviced, maintained, and

how it works. Technical documents are created for other software

engineers, IT professionals, and users of the software.

 User documentation may include some of what is found

within technical documentations but is aimed at supporting users of

the software. Most commonly, user documentation consists of how

to use software and is fundamentally a user manual. Most likely,

user documentation will be located in user ‘help’ sections within

software, online under help sections and as web-based articles, and

within printed material shipped with a product. As useful as user

documentation may be, many product developers and their

benefactors seek to include user documentation as a means to market

their software and increase a software’s userbase.

 Marketing documentation is not as complete as other types of

documentation due to its differing nature. This documentation is

short and used as a method to advertise to and educate potential

clients of what the software can do for them.

S o f t w a r e E n g i n e e r i n g | 12

Software Licensing

 As with any product in most every country, software may be

protected under various types copyright and patent laws. The

significance of copyrighting a product is to guarantee, to an extent,

that software will be protected against unauthorized use and

reproduction. In addition to filing claims for copyrights and patents,

users may be presented with a EULA(End-User License Agreement)

when purchasing or installing software containing a listing of the

owner’s rights and exemption from liabilities due to malicious use

by the user. By doing so, creators of software are able to maximize

revenue and prevent others from negatively impacting sales of their

product(s) due to statutorily defined theft or misuse. These licensing

agreements are often quite lengthy and filled with technical and

legal jargon making them highly controversial when needing be

agreed to by clients prior to use of the software.

Some software is distributed freely by individuals and

companies yet is still protected under licensing laws. Comparable to

EULAs, Creative Commons licenses enable creators to protect their

products and themselves from liability from unwanted and illicit

uses of their software. Some CC licenses permit anyone to modify,

repackage, and share software but with conditions: attribution, code

must remain open-source, and keeping the software non-

commercial or not-for-profit are but a few possible clauses that may

be included with a licensing agreement.

More information about Creative Commons licenses may be found

at:

https://creativecommons.org/licenses/

https://creativecommons.org/licenses/

