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The Binary Number System 

 

Decimal Number System 

 Virtually all of us are familiar with the decimal system of 

numbers. In it, digits are represented by 0-9, and the position of the 

number dictates its value. How does the position determine the 

digits real value, though? 

Think about a simple number, such as 8. All this number 

represents is 8 ones, and could even be shown as 1+1+1+1+1+1+1+1, 

if you really wanted. As we work left, the digits represent a higher 

value. Take 20, this number represents 2 tens and 0 ones. In fact, we 

can ignore the ones place if we’re just looking at tens. Use 25 instead 

and the 2 still represents 2 tens. On its own, the 2 could potentially 

represent anything, but we use a positional number system, so we 

know that where the digit is matters. Each position is a different 

order of magnitude. In decimal’s case, each digit is worth 10 times 

that of the same digit to its right (i.e. 300 is 10 times greater than 30). 

As such, the value of each digit can be found by using the 

equation: 

10Position * digit 

 We actually use the ones place as position 0. For now, just 

know that this is true. Here’s an example using 231: 
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Step 1: Find the value of each position. 

102 ∗  2 =  200 

101  ∗  3 =  30 

100 ∗  1 =  1 

 

Step 2: Add all positions together to get the final number. 

200 + 30 + 1 = 231 

 

But why do we start at position 0? If you recall, any number 

raised to the power of 0 is equal to 1. Considering the ones place can 

only be numbers with a single digit, this must be the case. 

What about when we move right of the decimal point? Think 

of the position as a reversed number line. All numbers left of position 

0 are positive, getting larger as we move left, while all numbers right 

of position 0 are negative, getting smaller as we move right. This fits 

perfectly with our equation, as negative exponents are used for 

fractions. So, we would use 0.5 to represent: 

10−1 ∗ 5 = 0.5 
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Binary Number System 

Binary works in a very similar way to decimal, just with a 

different radix. Radix is essentially just another term for base. 

Decimal, for instance, has the radix 10, while binary has a radix of 2. 

As we covered, a decimal digit has a value of ten times that of the 

digit to its right, and binary works the same way. Since the radix is 

2, however, each digit has a value of twice that of its neighbor to the 

right. Due to this, we need to tweak our equation for representation 

a bit.  

In binary, we can convert a number to its decimal 

representation by the equation: 

2Position * digit 

 

 Once again with the position starting as 0. Instead of simply 

applying this equation to binary, however, we can apply it to all 

number systems, by changing it to: 

𝑏𝑎𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  ∗  𝑑𝑖𝑔𝑖𝑡 

 

What the base truly changes, though, is the number of digits 

possible before moving on to the next place holder. As said before, 

our decimal system contains the digits 0-9. Altogether, this is 10 

unique digits. Binary, on the other hand, only has 0 and 1 to work 

with- two unique digits. Thus, all binary digits will be only 0 or 1. 

Having only these two values, we often refer to them in several 
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different ways.  Some of these include: “on” as 1 and “off” as 0; 

“high” as 1 and “low” as 0; and “true” as 1 and “false” as 0. 

Calling them binary digits all the time would get tiring, and 

as a result the shortened name bit was created. As bits are already in 

base 2 as well, they are generally grouped in powers of two (i.e. 1, 2, 

4, 8). Commonly, eight bits are grouped together to create what is 

known as a byte. 

 

Binary Conversion 

Since we’re most familiar with decimal, it is always useful to 

be able to convert to-and-from binary and decimal. Converting 

binary to decimal is straightforward using our equation.  

Let’s use the 8-bit binary number 10110111. To convert this to 

decimal, we would do the following: 

Step 1: Find the value of each position. 

20 ∗ 1 = 1 

21 ∗ 1 = 2 

22 ∗ 2 = 4

23 ∗ 0 = 0 

24 ∗ 1 = 16 

25 ∗ 1 = 32 

26 ∗ 0 = 0 

27 ∗ 1 = 128
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Step 2: Add all position values together. 

1 + 2 + 4 + 0 + 16 + 32 + 0 + 128 = 183 

 

Converting decimal to binary is far less straightforward. We will 

use the decimal number 53 as an example: 

Step 1: Divide the number by 2 and keep the remainder, R. 

53

2
= 26 R 𝟏 

 

Step 2: Store the remainder in its own number. We’ll call this 

number our “marks.”  Use the division result as your new 

number. 

New number: 26 

Marks: 𝟏 

 

Step 3: Repeat steps 1 and 2 until you are left with 0 as your 

number, placing the new remainder left of your current 

markings each time. 

26

2
= 13 R 𝟎 

New number: 13 

Marks: 𝟎1 
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13

2
= 6 R 𝟏 

New number: 6 

Marks: 𝟏01 

6

2
= 3 R 𝟎 

New number: 3 

Marks: 𝟎101 

3

2
= 1 R 𝟏 

New number: 1 

Marks: 𝟏0101 

1

2
= 0 R 𝟏 

New number: 0 

Marks: 𝟏10101 

 

Our new number is 0, so our marks are the final number 

converted to binary. 

1101012 = 5310 
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 Conversion brings up an interesting question: how many 

combinations are possible with a given number of bits? Once again, 

we can use the radix to find out. Since there are two possible states 

for each bit, and we have a number, n, bits, we must multiply 2 times 

itself n times, or in other words: 

Total combinations = 2n 

For 4 bits this means we have 24, or 16, possible combinations. 

Since this is exponential, increasing the number of bits slightly can 

have a huge impact on the total combinations. Four bits could only 

produce 16 unique numbers, while eight bits can produce 28, or 256, 

unique numbers. As 0 takes up one number, values for these 

unsigned integers will range from 0 to 255. These numbers are called 

“unsigned” as they can only be positive, there is no sign to make 

them negative. 

 When referring to the leftmost or rightmost bits, we choose to 

call them the “most significant” and “least significant” bits 

respectively. This is because the least significant bit has the lowest 

positional value, only contributing 1 or 0 to the total value, while the 

most significant bit has the highest positional value. In an 8-bit 

number, the most significant bit contributes 128 in decimal. 
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Binary Arithmetic 

Binary works in the same way but with far fewer digits. Let’s 

add the binary equivalent of 11 + 2 by using 1011 + 0010; we will get 

13 for an answer, which is 1101: 

Step 1: Split all bits. 

𝟏3 + 𝟎2 + 𝟏1 + 𝟏0 = 1011 

𝟎3 + 𝟎2 + 𝟏1 + 𝟎0 = 0010 

 

Step 2: Add least significant bits, moving to most significant 

(right to left).  

𝟏0 +  𝟎0 =  𝟏0 

𝟏1 +  𝟏1 =  𝟎1 

Adding 1 + 1 will give us 2, but we aren’t working with 2’s, 

only 0’s and 1’s.  So, the extra gets carried over to the 𝐗2 spot.  

Due to the carry-over, the first 𝟎2 will become a 𝟏2. 

𝟏2 +  𝟎2 =  𝟏2 

𝟏3 +  𝟎3 =  𝟏3 
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Step 3: Now we have finished with the addition and carry-

over.  Next is to realign, from right to left, to acquire our 

answer to 1011 + 0010.  

 𝟏3𝟏2𝟎1𝟏0  or  𝟏𝟏𝟎𝟏 

1101 = 8 + 4 + 0 + 1 = 13 

 

Logic Operations, Bitwise Operators, and 

Truth Tables 

 Logic operations, while working with digital computers, are 

methods to test relationships between data.  To do so, a truth table 

may be created to visually present outcomes of comparison.  While 

there are several logic operations to compare data (AND, OR, NOT, 

NAND, NOR, XOR, and XNOR), there are four that are most 

commonly used in teaching/learning elementary computer science: 

AND, OR, NOT, and XOR; however, all seven will be covered.  For 

the following examples of truth tables, we will compare two 4-bit 

binary numbers, 0110 and 1100. 

Bitwise operators are symbols used to shorten code and 

replace having to type out the full names/values operators.  

Operators may be implemented slightly differently among the many 

different programming languages, but their general root form is as 

follows: 
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Bitwise Operators 

& AND 

| OR 

~ NOT 

^ XOR 

<< Signed left shift 

>> Signed right shift 

>>> Unsigned right shift 

&= AND assignment 

|= OR assignment 

^= OR assignment 

<<= Left shift and assignment 

>>= Right shift and assignment 

>>>= Unsigned right shift and 

assignment 

 

 The AND operator returns True if all compared inputs are 1 

or True.  In computer programming AND is often represented by an 

& symbol to compare two or more inputs. 

AND 

A B AB 

0 1 False 

1 1 True 

1 0 False 

0 0 False 
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 The OR operator returns True if any of its inputs are 1 or 

True.  In computer programming OR is often represented by a | 

symbol to compare two or more inputs. 

OR 

A B AB 

0 1 True 

1 1 True 

1 0 True 

0 0 False 

 

 The NOT operator returns True if an input is 0 or False and 

will return False if an input is 1 or True.  In computer programming 

NOT is often represented by using the ! symbol or ~ symbol.  NOT 

is the only operator to take only one input. 

NOT 

A AB 

0 True 

1 False 

1 False 

0 True 
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 The NAND operator returns True if none of the compared 

inputs are all 1’s or True.  NAND is a combination of NOT and 

AND and is often represented in computer programming by using 

a combination of ! or ~ with an &. 

NAND 

A B AB 

0 1 True 

1 1 False 

1 0 True 

0 0 True 

 

 The NOR operator returns True if any of the compared 

inputs are 0 or False.  NOR is a combination of NOT and OR and is 

often represented in computer programming by using a 

combination of ! or ~ with a |. 

NOR 

A B AB 

0 1 False 

1 1 False 

1 0 False 

0 0 True 
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 The XOR, exclusive-OR, logic operator is used to determine if 

exactly one of the inputs being compared is 1 or True.  XOR, 

exclusive-OR, is often represented using a ^ symbol in computer 

programming. 

XOR 

A B AB 

0 1 True 

1 1 False 

1 0 True 

0 0 False 

 

 The XNOR, exclusive-NOT-OR, bitwise operator is used to 

determine if two or more inputs are all the same, which would 

return True.  The difference with this logic operator, is that all 

compared inputs must be either all True or all False.  In computer 

programming, XNOR is often represented by using a combination 

of ! or ~ with a ^. 

XNOR 

A B AB 

0 1 False 

1 1 True 

1 0 False 

0 0 True 
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Bit Shifting and Rotating 

We have two more operations to discuss that may not be as 

familiar. These are bit shifts, and bit rotations. For both of these, the 

positions of the binary number are moved left or right, but the 

difference is what we will fill the number in with. In a bit shift, we 

consider the bits to “fall off” the end of the number, so we fill in the 

missing bits with zeroes. With rotations, we instead move the bits 

from one end to the missing end.  

First, let’s look at how shifts would work in decimal. 

Let’s shift the number 540 right. To do this, we will just take 

all our numbers and move them right once, while ignoring any 

numbers that become fractions. We will fill in the left side with 

zeroes. 

We start with 540, then we move each digit one position right. 

𝟓𝟒𝟎  becomes   𝟎𝟓𝟒 |𝟎 

 

Our last digit “fell off” the right side of the number, so we 

discard it.  We now have 54, but since we had three digits to start, 

we can fill in a zero at the beginning. Thus, our final number is 054, 

or just 54.  This is the same as dividing our number by 10, since 

decimal is base 10. 

Now let’s shift the number 014 left. 

Once again, we start with 014, then move each digit one 

position left. Note that we have three digits total here.  | 𝟎𝟎𝟎  are 

spare, imaginary zeroes. 
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𝟎𝟏𝟒 | 𝟎𝟎𝟎  becomes  𝟏𝟒𝟎 | 𝟎𝟎 

 

 As you can see.  Our 0 digit “fell off” the left side and we 

discarded it.  On the right side, we pulled a 0 from imagination land 

to fill in the one’s place after the 1 and 4 shifted left. 

 Our final number is 140.  This is similar to the right shift, 

except in this case, we multiplied the number by 10. 

Moving over to binary, bit shifts work in the same way, just 

with a different base.  Let’s shift the binary number 011001 (25) left 

one. 

𝟎𝟏𝟏𝟎𝟎𝟏 becomes 𝟏𝟏𝟎𝟎𝟏𝟎 

 

Our most significant bit falls off and is discarded, and now we 

need to fill in the missing bit.  Our final number is 110010 in binary, 

which is equal to 50 in decimal. Since we are in base 2, it makes sense 

that the number should be multiplied by 2. 

Next, if we move it right, we should expect it to be divided by 2. 

𝟎𝟏𝟏𝟎𝟎𝟏 becomes 𝟎𝟎𝟏𝟏𝟎𝟎 

 

Our number is now one bit short, so we fill in the missing slot 

on the far left with a zero to get 001100.  The 1 on the far right ends 

up being dropped. 
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Finally, we get 001100, or 12 in decimal. This isn’t exactly half 

of 25, as we had to get rid of our final bit. So, we can consider right 

bit shifts to be the same as integer division, as they leave no fractional 

portion. This bit has “fallen off” the right side of the number. 

Let’s look at what happens when a bit falls off the left side of 

a number. For this we will use 11010110-  214 in decimal. We will 

shift the number left once. 

𝟏𝟏𝟎𝟏𝟎𝟏𝟏𝟎 becomes 𝟏𝟎𝟏𝟎𝟏𝟏𝟎𝟎 

 

We can already see that our new number is smaller than our 

original number by looking at the first two digits; 11 became 10. 

10101100 is equal to 172 in decimal. This is because the most 

significant bit “fell off” when it was shifted left, since we only had 8 

bits to work with. Our last step is to fill in the right side with a zero, 

and we have our number.  

Rotations, on the other hand, fill in the missing bits with 

whatever falls off the other side. Again, let’s look at this in decimal 

first. 

Let’s rotate the number 308 left once. We will consider this 

number to only have 3 digits at most. 

𝟑𝟎𝟖 becomes 𝟎𝟖𝟑 

 

In this case, instead of simply removing the 3 on one end and 

adding a 0 on the opposite, we will fill in the missing digit with our 

fallen digit. 



D a t a  S t o r a g e  | 18 

 

If we were to rotate 308 right once instead, it would look like 

this: 

𝟑𝟎𝟖 becomes 𝟖𝟑𝟎 

 

Now we can extend this operation to binary easily.  Let’s use 

1011 as an example, and we can rotate it left by one digit. 

𝟏𝟏𝟎𝟏 becomes 𝟏𝟎𝟏𝟏 

 

 And if we instead rotate it right once: 

𝟏𝟏𝟎𝟏 becomes 𝟏𝟏𝟏𝟎 

 

These bit rotations are just a different method of how we fill 

in our missing bits after we shift them. 
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Negative Numbers: Two’s Complement and 

Excess Notation 

 Computers can only read binary numbers at their core. This 

means -10 could not be read as -2.  In fact, it couldn’t be read at all. 

Instead, we must use a method to convert some numbers to negative 

numbers using only the bits we have. 

Important to note is that, since we must use our limited bits 

to produce negative and positive numbers, the highest maximum 

value for these so-called signed numbers is half of the possible values 

minus 1 because ‘0’ is part of the positive spread, and the lowest 

minimum value is half of the possible values and negative. For 

signed numbers, the most significant bit determines if it is positive 

or negative. 

 To demonstrate, let’s once again use 1 Byte which holds 8 bits. 

Step 1: Find the total possible values. 

𝟐𝟖 = 256 

 

Step 2: Divide by 2 to get half of the total possible values.  

Each spread of positive and negative will this many values. 

𝟐𝟓𝟔

𝟐
= 128 
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Step 3: To get the lower bound (lowest negative value), make 

this number negative. 

For the upper bound (highest maximum value), subtract 1. 

𝑼𝒑𝒑𝒆𝒓 𝒃𝒐𝒖𝒏𝒅: 𝟏𝟐𝟕 

𝑳𝒐𝒘𝒆𝒓 𝒃𝒐𝒖𝒏𝒅: −𝟏𝟐𝟖 

 

One method represent negative numbers in binary is 

Two’s Complement. 
 

 

3-bit Two’s Complement 
011 3 

010 2 

001 1 

000 0 

111 -1 

110 -2 

101 -3 

100 -4 
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4-bit Two’s Complement 
0111 7 

0110 6 

0101 5 

0100 4 

0011 3 

0010 2 

0001 1 

0000 0 

1111 -1 

1110 -2 

1101 -3 

1100 -4 

1011 -5 

1010 -6 

1001 -7 

1000 -8 

 

Two’s Complement works by checking if the sign bit (the 

most left bit) is a 1. If it is, then the remaining bits are flipped, 1’s 

turn to 0 and 0’s turn to 1, and one is added afterwards. The result is 
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read normally, but as a negative number. If the sign bit is 0, read the 

number normally as a positive. Let’s use two examples, 101 and 010. 

Step 1: Check if the most significant bit (on the left) is 1. 

101 → 𝑌𝑒𝑠 

010 → 𝑁𝑜 

 

Step 2: If yes, flip the remaining bits and add 1 to get the final 

number.  (i.e. all 0’s become 1’s and vice versa) 

𝟏𝟎𝟏 → 𝟎𝟏 becomes 𝟏𝟎 then becomes 𝟏𝟏 

𝟎𝟏𝟎 → 𝟏𝟎 stays 𝟏𝟎  

 

𝟏𝟏 is 3 in binary 

𝟏𝟎 is 2 in binary 

 

Step 3: If the sign bit is 1, the final number is negative. 

101 =  −3 

010 =  2 
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 Addition in Two’s Complement works just like unsigned 

addition, but with one catch: any bits added onto the number by this 

addition are truncated back down to the original number of bits. We 

can show this by adding -2 and 3. We’ll need only three bits for this, 

and the numbers will be represented 110 and 011 respectively.  

Step 1: Add numbers together normally. 

110 + 011 = 1001 

 

Step 2: If the most significant bit extends past how many bits 

we started with, cut it off. 

• 1001 is four bits, but we started with three. 

• Get rid of the first digit, 1. 

• The final number is 001 

• Now read 001 in Two’s Complement.  001 is 

positive, so no digits are changed.  001 is +1 in 

two’s complement. 

 

 Once again, this is to be expected as -2 + 3 = +1. 
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Another method exists known as Excess Notation.  
 

 

3-bit Excess Notation 

111 3 

110 2 

101 1 

100 0 

011 -1 

010 -2 

001 -3 

000 -4 
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4-bit Excess Notation 

1111 7 

1110 6 

1101 5 

1100 4 

1011 3 

1010 2 

1001 1 

1000 0 

0111 -1 

0110 -2 

0101 -3 

0100 -4 

0011 -5 

0010 -6 

0001 -7 

0000 -8 

 

In excess notation, the zero point is the number which 

corresponds to, well, 0. This is always when the most significant bit 

is 1 with only 0’s following. For this reason, the form of excess 
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notation being used is known as “excess ____” with the blank being 

the zero point (i.e. excess 8 if four bits are used).  Each number 

greater than the zero point is read normally as a positive number, 

while each number less than it is read as a negative number.  The 

negative number has a magnitude of its distance away from the zero 

point.  We’ll use 001101 as an example in excess 32. 

 

Step 1: Identify the zero point. 

𝐼𝑛 𝑒𝑥𝑐𝑒𝑠𝑠 32, 𝑡ℎ𝑒 𝑧𝑒𝑟𝑜 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 32 

 

Step 2: If the number has a sign bit of 0, subtract it from the 

zero point. 

100000 − 001101 = 010011 

 

Step 3: Read this number normally, and if the first bit is a 0, it 

is negative.  If the first bit is 1, read it normally, ignoring the 

most significant bit. 

010011 = 19 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 001101 =  −19 𝑖𝑛 𝑒𝑥𝑐𝑒𝑠𝑠 32 

 

 In addition, if all of the bits in a number in excess notation are 

1, the number is the positive zero point minus 1. If all bits are 0, the 

number is the negative zero point. 
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In excess 32: 

111111 = 32 − 1 = 31 

000000 =  −32 

 

Binary Fractions 

 Up until now we have worked only with binary integers, but 

this ignores a rather large section of numbers- an infinitely large 

section, even. Binary fractions work just the same as they do in 

decimal. 

Using our conversion method, we’ve been assuming the 

“ones” place to be position 0, this is because when fractions are 

involved, the first fractional place will use the position -1. While at 

first this may seem odd, think of it this way: the “tens” place in 

decimal uses position 1, so the tenths place should use position -1. 

The same is true for hundreds and hundredths and so on. As there 

is no “oneths” place, the “one’s place must take a number with no 

negative value, such as 0.  
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Let’s convert the binary number 10.011 to decimal using our 

positional equation: 

Step 1: Convert each position to decimal. 

21 ∗ 2 = 2 

20 ∗ 0 = 0 

2−1 ∗  0 = 0 

2−2 ∗ 1 =
1

4
 

2−3 ∗ 1 =
1

8
 

 

Step 2: Add all positions together. 

2 + 0 +
1

4
+

1

8
= 2

3

8
= 2.375 

 

 Problems are raised by this method, such as how to represent 

fractions that aren’t powers of two. 0.3 is an easy number to 

represent in decimal, but how would you represent it with only a 

few bits? Let’s use 4 bits, not including the whole numbers. 

Step 1: First, we assign 0 as the whole number portion and 

add a radix point. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟: 0. 
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Step 2:  We check if 0.1 (.1 = ½) will be too high. In this case, 

it is, so we place a 0 there. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟: 0.0 

Step 3: After this, we repeat, checking if 0.01 will be too high 

and so on.  0.01 = .25, thus it is not too high and can be added 

on. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟: 0.01 

Step 4: Adding 0.001, 0.125 in decimal, is too high, so another 

0 is added. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟: 0.010 

Step 5: We have only one bit remaining, and it corresponds to 

0.0625, which is still too high. 

𝐹𝑖𝑛𝑎𝑙 𝑏𝑖𝑛𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟: 0.0100 

 

Our final binary number then is 0.0100, corresponding to 0.25 

in decimal. This means our fraction is 0.05 lower than our target of 

.30 when limiting ourselves to only four bits.  
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Floating Point 

 Once again, we’ve run into the problem of computers only 

reading numbers. Computers don’t read radix points, so we need 

another new method of storing fractions. Solving this problem is 

floating-point notation. Floating point numbers work by breaking 

the number down into two or three segments, depending on whether 

it is a signed number or not. For our purposes we will assume our 

floating-point values are signed and will be represented with 8 bits. 

 The segments are as follows: 

▪ The most significant bit is the sign bit. 

▪ The three bits following this are the exponent 

bits. 

▪ The four final bits are the mantissa, or 

significand. 

 First is the sign bit. Like in Two’s Complement, if the sign bit 

is 1, the number is negative, and if it is 0, the number is positive. For 

example, the number 10011001 would be negative, while 00011001 

would be positive. 

 Next is the mantissa. This number will always lie between 1 

inclusive and 2 exclusive. This is achieved by assuming a 1 in front 

of the mantissa, along with a radix point. Thus, we look at the 

mantissa’s four bits like this: 

(1. )𝑋𝑋𝑋𝑋 

 Where the X’s can be either 1 or 0 each. 1.5, for instance, would 

be represented as follows: 

1.1000 



31 | C h a p t e r  1  

 

 While at first this looks like 8, we have to remember that a “1.” 

is always assumed in front of the number. From this, we can 

determine that the smallest number possible for our mantissa is 

1.0001, or 1.0625. 

 The exponent segment is comprised of three bits which will 

determine how to multiply the mantissa. Essentially, we take the 

number produced by these three bits and use it as a power of 2, 

which we then multiply the mantissa by. This number is found using 

excess notation. Let’s say we wanted the exponent -2. For this we 

would just need to find -2 in excess notation. 

Step 1: -2 is two down from the zero point, so we take 100 and 

subtract 010 

100 − 010 = 010 

 

 Thus, in excess 4, our exponent of -2 is represented as 010. 

 The final equation is as follows: 

(−1)𝑠𝑖𝑔𝑛 𝑏𝑖𝑡 ∗ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ∗ 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 
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 It’s definitely time for an example for this, so let’s use 

10010110 and convert it to decimal. 

Step 1: Look at the sign bit. 

As the sign bit is 1, the number will be negative 

 

Step 2: Determine the exponent. 

100 − 001 = 011 

So the exponent is: − 3 

 

Step 3: Determine the mantissa. 

𝟎𝟏𝟏𝟎 becomes 𝟏. 𝟎𝟏𝟏𝟎 

 

𝟏. 𝟎𝟏𝟏𝟎 = 𝟏. 𝟑𝟕𝟓 

 

Step 4: Use the floating-point equation to find the final 

number. 

(−1)1 ∗ 2−3 ∗ 1.375 

Which simplifies to: 

−
1

8
∗

11

8
= −

11

64
=  −0.171875 
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 How could we convert to floating point, instead of from it? The 

process is as follows, using 13 as the starting value: 

Step 1: Convert the number to binary. 

13 → 1101 

 

Step 2: Place a radix point between the first two bits. 

1101 →  1.101 

 

Step 3: Add zeroes or remove digits at the end until you’re left 

with 4 bits following the radix. The bits following the radius 

are the mantissa. 

(1).101 → (1). 𝟏𝟎𝟏𝟎 

Note: the most significant bit is assumed to be there, but we can ignore it. 

 

Step 4: Shift the radix point to where it would be in the 

original number and count how far it moved. If it moved 

right, the number is positive, if it moved left, negative. 

(1).1010 → (1)101.0 
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Step 5: The radix point moved three places to the right.  

Convert this number to excess notation. This is the exponent. 

3 → 111 

 

Step 6: Finally, put the exponent and mantissa together, along 

with the sign bit; 0 for positive, 1 for negative. 

(Sign bit :: exponent :: mantissa) 

0 111 1010 → 01111010 

 

This is how we would represent 13 in floating point notation.  To 

check it, let’s run through the conversion. 

➢ The sign bit is 0, so the number is positive. 

➢ Since we have 3 exponent bits, the exponent is in 

excess 4.  The first bit, 1, means the number is 

positive, and the remaining 11 represents 3. 

➢ The mantissa is 1010, which really represents 1.1010, 

which is 1.625 in decimal.   

➢ Finally, use the equation: 

(−1)0 ∗ 23 ∗ 1.625 = 1 ∗ 8 ∗ 1.625 = 8 ∗ 1.625 = 13 
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 It’s easy to see how useful floating-point notation can be. Of 

course, floating-point numbers don’t use only 8 bits normally. 

Generally, in accordance with IEEE-754, 32- and 64-bit floating-point 

numbers are used, giving a very wide range of numbers of far higher 

precision than what we used. 

 Precision is important for many tasks, but floating-point does 

run into issues with it. As mentioned before, some numbers simply 

aren’t achievable with a set number of bits, such as 0.3. With 32 or 64 

bits, however, we can get very close to this value. A number such as 

10000.3 would be significantly harder to reach, due to the nature of 

exponents.  

The number of floating-point values between each interval, 

being powers of two in binary, is equal to all other intervals. In other 

words, if there are 100 values between 1 and 2, there are also only 

100 values between 64 and 128. While that may not be much of an 

issue at lower intervals, imagine only having 100 values to represent 

numbers between 4096 and 8192. 

Of course, with 32 or 64 bits, this isn’t too much of a problem 

until the numbers become very large, but it is important to consider 

as numbers will become less accurate the larger they become. 
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EXAMPLES 
 

1) Convert the binary number 1011 to decimal. 

First, we need to know what each position value is.  We start 

with 23, then 22, 21, and 20.  This means the positions are equal 

to: 

1 0 1 1 

↑ ↑ ↑ ↑ 

8 4 2 1 

 

Now we can add together the values of the positions where 

we have ones. 

8 + 0 + 2 + 1 = 11 

 

So, the value of the binary number 1011 in decimal is 11. 
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2) Convert the binary number 01011101 to decimal.  We’ll first get 

the value of each position. 

27, 26, 25, 24, 23, 22, 21, and 20 

128, 64, 32, 16, 8, 4, 2, 1, 0 

 

Now convert those powers of two into decimal numbers. 

     64 16 8 4     1 

     ↓    ↓ ↓ ↓     ↓ 

   0 1 0 1 1 1 0  1 

↑    ↑          ↑ 

128 32       2        

  

Then we can add together the values of the positions with 

ones. 

64 + 16 + 8 + 4 + 1 = 93 

 

Thus, the decimal value of the binary number 01011101 is 93. 
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3) Convert the decimal number 13 to a 4-bit binary number. 

First, we’ll divide the number by two until we end up with 0, 

holding onto the remainder each time. 

13 / 2 = 6 R 1 

6 / 2 = 3 R 0 

3 / 2 = 1 R 1 

1 / 2 = 0 R 1 

 

Now, we can place the remainders together in reverse order 

to get our binary number. 

1011 = 13 

 

So, we find that the decimal number 13 as a 4-bit binary 

number is represented as 1101. 
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4) Convert the decimal number 122 to an 8-bit binary number. 

Divide our first number by two until we get to 0, keeping 

track of the remainder each time. 

122 / 2 = 61 R 0 

61 / 2 = 30 R 1 

30 / 2 = 15 R 0 

15 / 2 = 7 R 1 

7 / 2 = 3 R 1 

3 / 2 = 1 R 1 

1 / 2 = 0 R 1 

 

Once we have our remainders, we can place them together 

from the bottom up to get our binary number. 

1111010 

 

In this case, we need just one more bit to give us an 8-bit 

number, so we can add a zero to the beginning. 

122 = 01111010 
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5) Find the binary and decimal results of adding 1100 + 0110. 

 First, we split the bits to find their positions. 

1100 → 13 + 12 + 01 + 00 

0110 → 03 + 12 + 11 + 00 

 

Next, we add each position from the first number with the 

corresponding position of the second number. Carry values 

when necessary (highlighted yellow). 

00 + 00 = 00 

01 + 11 = 11 

12 + 12 = 02 + 13 

13 + 03 + 13 = 03 + 14 

 

Now we can put together our resulting bits in their correct 

positions. 

11010 

 

So, the addition of 1100 and 0110 is equal to 11010. Now let’s 

convert that to decimal. 
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1 1 0 1 0 

↑ ↑ ↑ ↑ ↑ 

16 8 4 2 1 

 

16 + 8 + 0 + 2 + 1 = 26 

 

Finally, we find that 1100 + 0110 is equal to the decimal value 

26. 

 

 

 

 

 

 

 

 

 

6) Find the binary and decimal results from adding 10011110 + 

00111011. 
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 First, split all bits into their positions. 

10011110 → 17 + 06 + 05 + 14 + 13 + 12 + 11 + 00 

00111011 → 07 + 06 + 15 + 14 + 13 + 02 + 11 + 10 

Next, we add each position of the first number with the 

respective positions of the second. Carry values when 

necessary (highlighted yellow). 

00 + 10 = 10 

11 + 11 = 01 + 12 

12 + 02 + 12 = 02 + 13 

13 + 13 + 13 = 13 + 14 

14 + 14 + 14 = 14 + 15 

05 + 15 + 15 = 05 + 16 

06 + 06 + 16 = 16 

17 + 07 = 17 

Now, we can put together the results that we didn’t carry over 

to get our number. 

11011001 

Since we have the binary number, now let’s get the decimal 

value. 
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     64 16 8 4     1 

     ↓    ↓ ↓ ↓     ↓ 

   1 1 0 1 1 0 0  1 

↑    ↑          ↑ 

128 32       2        

 

128 + 64 + 16 + 8 + 1 = 217 

We now have our binary number of 11011001 and our decimal 

value of 217 by adding 10011110 and 00111011. 
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7) Find the value of 1010 in two’s complement. 

 Check if the sign bit is 1 or 0.  The sign bit is the most 

significant bit. 

1010 

 

 Since it is, flip the remaining bits. 

010 → 101 

 Add 1 to the value. 

101 → 110 

 Now read the value as if it were unsigned. 

1 1 0 

↑ ↑ ↑ 

4 2 1 

4 + 2 + 0 = 6 

 Since the sign bit in the beginning was 1, the number is 

negative. Thus, our final number is -6. 
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8) Find the value of 0111 in two’s complement. 

 Check if the sign bit is 1 or 0.  The sign bit is the most 

significant bit. 

0111 

 

 As the sign bit is 0, we can read the number as if it were 

unsigned. 

1 1 1 

↑ ↑ ↑ 

4 2 1 

4 + 2 + 1 = 7 

 Our final number is +7. 
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9) Find the value of 10010100 in two’s complement. 

 Check the sign bit.  The sign bit is the most significant bit. 

10010100 

 Since the sign bit is 1, flip the remaining bits, then add 1 to the 

result. 

0010100 → 1101011 

 Add 1 to the value. 

1101011 + 1 → 1101100 

 

 Now we can read this number normally, but as a negative. 

     64 16 8 4     1 

     ↓    ↓ ↓ ↓     ↓ 

   0 1 1 0 1 1 0  0 

↑    ↑          ↑ 

128 32       2        

 

64 + 32 + 0 + 8 + 4 + 0 + 0 = 108 

 Remember, at the start our sign bit is negative, making our 

final number -108. 
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10) Find the value of 00011010 in two’s complement. 

 Check the sign bit. 

00011010 

 

 Since the sign bit is 0, the number is positive and can be read 

normally. 

     64 16 8 4     1 

     ↓    ↓ ↓ ↓     ↓ 

   0 1 1 0 1 1 0  0 

↑    ↑          ↑ 

128 32       2        

 

32 + 16 + 2 = 50 

 Therefore, our final number is 50. 
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11) Add the binary numbers 1011 + 0111 in 4-bit two’s complement. 

Remember that two’s complement addition works almost 

exactly like unsigned addition. We will start by separating the 

bits by their positions (carried numbers are highlighted). 

1011 = 13 + 02 + 11 + 10 

0111 = 03 + 12 + 11 + 10 

 

Next, we add the positions, carrying over numbers when 

necessary. 

10 + 10 = 00 + 11 

11 + 11 + 11 = 11 + 12 

02 + 12 + 12 = 02 + 13 

13 + 03 + 13 = 03 + 14 

14 =  14 

Now we can put the numbers we didn’t carry together to form 

our binary number. 

10010 
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The difference between unsigned addition and two’s 

complement addition is that our final number in two’s 

complement must be truncated back down to 4-bits. 

10010 → 0010 

 

Finally, we can read this number as a regular two’s 

complement number. As the sign bit is 0, it will be positive 

and can be read normally. 

0 0 1 0 

↑ ↑ ↑ ↑ 

8 4 2 1 

 

0 + 0 + 2 + 0 = 2 

Thus, our final number is 2. 
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12) Add the binary numbers 01101101 + 01011101 in 8-bit two’s 

complement. 

 Start by breaking apart the numbers into their positions. 

01101101 → 07 + 16 + 15 + 04 + 13 + 12 + 01 + 10 

01011101 → 07 + 16 + 05 + 14 + 13 + 12 + 01 + 10 

 

 Then add the positions, carrying when necessary. Carried 

numbers will be highlighted. 

10 + 10 = 00 + 11 

01 + 01 + 11 = 11 

12 + 12 = 02 + 13 

13 + 13 + 13 = 13 + 14 

04 + 14 + 14 = 04 + 15 

15 + 05 + 15 = 05 + 16 

16 + 16 + 16 = 16 + 17 

07 + 07 + 17 = 17 
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Now we can put the numbers in our results together, ignoring 

the carried numbers. 

11001010 

The sign bit is 1, meaning the number is negative. Why is this 

the case despite adding two positive numbers? Recall that if a 

binary number becomes too large, it can overflow and become 

very small. This is due to only having 7-bits to represent our 

value, meaning the largest number we can represent is only 

127. Any larger and we wrap back around. So, we flip the 

remaining bits and add 1 to this result to get our final number. 

1001010 → 0110101 

0110101 + 1 = 0110110 

 

Now let’s convert this number to decimal to see what our 

result is. 

        64 16 8 4     1 

        ↓    ↓ ↓ ↓     ↓ 

     0 0 1 1 0 1 1  0 

 ↑    ↑          ↑ 

128 32       2 

 

32 + 16 + 4 + 2 = 54 

We know our final number must be negative because the sign 

bit is 1, so our result is -54. 
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13) Convert the decimal number -5 into a 4-bit two’s complement 

binary number. 

First, we know that the sign bit must be 1, so the remaining 3 

bits are what we will use for the 5. We can just convert the 5 

into binary normally. 

5 / 2 = 2 R 1 

2 / 2 = 1 R 0 

1 / 2 = 0 R 1 

101 

 

Now we can reverse the process of finding a negative value 

in two’s complement by subtracting one from the value then 

flipping the bits. 

101 – 001 = 100 

100 → 011 

 

Finally, we can put the sign bit on the current number to get 

our two’s complement value. 

1011 

So, 1011 is our binary representation of -5 using two’s 

complement. 
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14) Convert the decimal number 98 into an 8-bit two’s complement 

binary number. 

We know that the sign bit must be 0, as the number is positive. 

We will then use the remaining 7 bits to represent the number. 

98 / 2 = 49 R 0 

49 / 2 = 24 R 1 

24 / 2 = 12 R 0 

12 / 2 = 6 R 0 

6 / 2 = 3 R 0 

3 / 2 = 1 R 1 

1 / 2 = 0 R 1 

1100010 

 

Since the number is positive, all we must do now is place the 

sign bit at the beginning of the number. 

01100010 

So, our 8-bit two’s complement binary representation of 98 is 

01100010. 
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15) Convert the binary number 0110, represented in excess 8, to its 

decimal value. 

First, take a look at the sign bit. In excess, 0 represents 

negative numbers. 

0110 

Since our sign is 0, we subtract the number from the “zero 

point,” in this case, 1000. 

1000 – 0110 = 0010 

Our number is, of course, negative, and we can now read it 

normally. 

0 1 0 

↑ ↑ ↑ 

4 2 1 

 

0 + 2 + 0 = 2 

We find that 0110 in excess 8 is equal to -2 in decimal. 
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16) Convert the binary number 11010100, represented in excess 128, 

to its decimal value. 

 Let’s look at the sign bit first. 

11010100 

 

 Since it is a positive number, we can read the remaining bits 

normally. 

     64 16 8 4     1 

     ↓    ↓ ↓ ↓     ↓ 

   0 1 0 1 0 1 0  0 

↑    ↑          ↑ 

128 32       2        

 

64 + 16 + 4 = 84 

 So, our decimal representation of 11010100 is 84. 
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17) Convert 7 to its excess 8 representation. 

We know the number will have a sign bit of 1, as it is positive. 

The remaining 3 bits will be used to get the binary 

representation as normal. 

7 / 2 = 3 R 1 

3 / 2 = 1 R 1 

1 / 2 = 0 R 1 

111 

 

Now we simply add the sign bit to the beginning of the 

number, and we have our excess 8 representation. 

1111 

Thus, our excess 8 representation of the decimal number 7 is 

1111. 
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18) Convert -83 to its excess 128 representation. 

This number is negative, so the sign bit will be a 0. We can 

add our number to 128 to get a number easily convertible to 

excess notation. 

-83 + 128 = 45 

 

Now we can convert this to binary how we have before. 

45 / 2 = 22 R 1 

22 / 2 = 11 R 0 

11 / 2 = 5 R 1 

5 / 2 = 2 R 1 

2 / 2 = 1 R 0 

1 / 2 = 0 R 1 

101101 

 

We need to use 7 bits, so a zero can be placed at the beginning 

of this, then the sign bit at the beginning of that. 

101101 → 0101101 → 00101101 

This means that our decimal value of -83 is represented as 

00101101 in excess 128. 
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19) Convert the binary number 10100110, represented in floating-

point, to its decimal value. 

First, we can look at the sign bit. A sign of 1 means the number 

will be negative. Next, we can determine the exponent as 

represented in excess 4 notation. 

010 → negative number 

100 – 010 = 10 

1 0 

↑ ↑ 

2 1 

2 + 0 = 2 

 Now, we can calculate the mantissa. 

1 is automatically assumed to be in front of the four bits of the 

mantissa. 

0110 → (1.)0110 

.5  .125 

↓    ↓ 

1 0 1 1 0 

↑    ↑    ↑ 

1   .25 .0625 

 

1 + .25 + .125 = 1.375 
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Finally, we can put all of this together with the floating-point 

equation. 

-11 * 2-2 * 1.375 = -0.34375 

 

Thus, the decimal value of the floating-point value 10100110 

is -0.34375. 

  



D a t a  S t o r a g e  | 60 

 

20) Convert the binary number 01111001, represented in floating-

point, to its decimal value. 

First, we can see that the sign is 0, meaning it will be a positive 

number.  Next, we can determine the decimal value of the 

exponent. 

111 → positive 

1 1 

↑ ↑ 

2 1 

 

2 + 1 = 3 

Exponent = 3 

 Now, we find the mantissa. 

.5  .125 

↓    ↓ 

1 1 0 0 1 

↑    ↑    ↑ 

1  .25 .0625 

 

1 + .5 + 0 + 0 + .0625 = 1.5625 

 Lastly, we use the floating-point equation. 

-10 * 23 * 1.5625 = 12.5 

So, we find that the floating-point-encoded binary number 

01111001 represents the decimal value 12.5. 
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21) Convert the decimal value 1.75 to its floating-point binary 

representation. 

First, we convert the number to its binary counterpart. 

We can use fractions to accomplish this. 

1.75 → 1.11 

.5  .125 

↓    ↓ 

1 1 1 0 0 

↑    ↑    ↑ 

1  .25 .0625 

 

 

Now, we can create our mantissa. Remember, we have 

four bits to represent this, and the whole-number and 

radix point we will just assume are there, we don’t 

need to waste bits to hold this. 

1.11 → (1.)1100 

 

Since this number does not need to be multiplied at all, 

our exponent will be 0. Remember that we find this 

exponent in excess 4 notation, so our zero-point is 

simple to find. 

0 → 100 
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Now that we have our exponent and mantissa, all we 

need is our sign bit. We already know that the number 

is positive, so a 0 can be used, and then our final 

number can be put together. 

01001100 

 

So, to represent the decimal number 1.75 in floating-

point-encoded binary, we use the number 01001100. 
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22) Encode the number -12.1875 in floating-point binary. 

 Convert the number to a binary fraction. 

12.1875 

12 → 1100 

0.1875 → 0.0011 

1100.0011 

 

Now we’ll move the radix to sit between the first two 

bits. 

1.1000011 

 

We can now remove the first bit as it is implied by our 

encoding. We then truncate the remaining bits down 

to the first 4 only. 

1.1000011 → 1000011 

1000011 → 1000 
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 Now we move the radix to find the exponent. 

.1000 → 100.0 

 

The radix moved 3 positions to the right.  This means 

our exponent must be 3. Convert this to excess-4 

notation. 

Positive numbers → sign bit 1 

Make the remaining bits fit 3. 

3 = 11 

111 

 

Now finish by determining the sign bit. Negative 

numbers will have a sign bit 1.  

11111000 
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Since we had to truncate our mantissa, this won’t be 

exactly the same as our original value. Let’s convert it 

back to see how closely it matches. 

1.1000 → 1.5 

111 → 3 

(-1)1 * 23 * 1.5 = -12 

 

Our answer is -12. This is certainly close to our original 

value but has completely lost its fractional value. It is 

important to always keep in mind both the upsides and 

downsides of floating-point notation. 

 


