

Chapter

6

Introduction to

Python

I n t r o d u c t i o n t o P y t h o n | 2

In this chapter we will learn the programming language

Python. It is an easy to use language, perfect for learning. We will go

over basic syntax and semantics of the language.

Intro to Python

Python is an object-oriented language, meaning it uses objects

to store data in and manipulate through methods, which are blocks

of code. This language focuses on having neat and elegant syntax,

making it easy to learn programming with. Examples of Python’s use

can be found in YouTube, Spotify, Instagram, and BitTorrent.

To start, let’s set up Python on your computer. Navigate to

Python’s official website and go under Downloads, to All Releases.

Here, you’ll need to scroll down the list of previous Python versions

to find Python 3.1.1. Depending on your system type, scroll down

on the 3.1.1 release page and download the Windows x86 MSI

Installer (3.1.1) OR Windows X86-64 MSI Installer (3.1.1). If your

computer is 32-bit system, download the first of the two. If you have

a 64-bit computer, be sure to download the other version.

3 | C h a p t e r 6

An installer will download to your computer, once it has

finished double click the installer in your downloads folder. Click

next through the wizard and allow administrative permissions when

it asks.

I n t r o d u c t i o n t o P y t h o n | 4

Now, both Python and IDLE (Integrated Development and

Learning Environment) should be properly set up on your machine.

To begin coding in Python, search and open up IDLE on your

computer.

To start coding, go to File, then to New Window. Here is

where you can write a python program, save, and run it. To save,

you can go to File and press Save, OR you can press Ctrl-S. Save the

file in an appropriate place like a coding practice folder.

5 | C h a p t e r 6

After that, you’ll want to go to the Options tab at the top and

click Run Module, or just press F5. This will run the program you

just wrote and return an output.

You don’t always need to do this, most of this lesson can be

done in IDLE without needing to make a New Window.

So, let’s start coding!

I n t r o d u c t i o n t o P y t h o n | 6

Hello World!

One of the most common and well-known beginner

programs, is the Hello World one. All this program will do is print

the words “Hello World!”. As simple as this program is, it will be

used as our foundation to build off of throughout this section. So,

let’s begin.

It’s best practice for programmers to follow three main

steps: Assessing and rewriting the problem, planning it out with

pseudocode, and then actually writing the code.

First: What do we need to do?

• We need to have python output back to the user the phrase

Hello World

Second: How might the code look for that? Or, what’s the

pseudocode?

 # This is a comment in code, also to help organize

We need our program to print out the words, or string, hello

world

print(Hello World)

7 | C h a p t e r 6

Finally: What does the actual code look like? Lucky for us,

Python was built for beauty, and is not too far off at all from the

pseudocode version.

>>> print(“Hello World!”)

Hello World!

The print() statement in Python will have the console or IDLE

print out what we want it

The “ ” tell Python that what we want printed is a string. A

string is just letters and words, they aren’t numbers, but something

meant to be read or printed out. Inside the quotes is what we want

printed out, thus the statement above prints out the string, Hello

World!

Press Enter after typing this into IDLE and you’ll be returned

the statement “Hello World!” IDLE often color codes program

outputs as blue to help users see what they printed.

It’s a simple program, but as the complexity of our programs

increase, this three-step process becomes more useful in organizing

code.

I n t r o d u c t i o n t o P y t h o n | 8

Basic Arithmetic and Strings

Now, let’s crunch some numbers. Arithmetic and basic math

is very easy in Python. If we wanted two numbers to be added or

multiplied or used in any way, we can do that in the print statement.

The following code multiplies 5 and 8, then after it prints the

answer, divides 10 by 5.

>>> #This multiplies 5 times 8

>>> print(5 * 8)

45

>>> #This divides 10 by 2

>>> print(9 / 5)

1.8

>>> print(9 - 5)

4

There are a few important things to note. First, we don’t use

quotes here because we aren’t dealing with strings, we are dealing

with numbers. To explain the difference, the below code shows the

difference between using quotes as a string, and not.

9 | C h a p t e r 6

>>> print(5 + 8)

13

>>> print(“5 + 8”)

5 + 8

String Concatenation is important in Python; it is when we

append a string onto another. It’s important to note this is not

addition of strings, as in we can’t add an integer to a string only

append it on.

>>> print(“Hello ” + “World!”)

Hello World!

>>> #This program incorrectly adds a str and int, and we are given

an error

>>> print(“Hello ” + 7)

Traceback (most recent call last):

 File "<pyshell#5>", line 1, in <module>

 print("Hello" + 7)

TypeError: Can't convert 'int' object to str implicitly

I n t r o d u c t i o n t o P y t h o n | 10

The above error says we cannot just add a string object and

an integer together, you can’t do that. But we can add the two strings

to get the above output! This is the basics of string concatenation.

If we want to append a number at the end of the string, we

have to call the string function, str(), to do so. The below example

shows just that.

>>> print(“Hello ” + str(7))

Hello 7

This tells Python to convert the value of 7, which is an integer,

to a string, allowing us to concatenate it with our string “Hello ”.

There are many Arithmetic Operators in Python. Look at the

table below and those are the operators we can use.

Operator Meaning Example

+ Addition 11 + 2 → 13

- Subtraction 5 - 4 → 1

* Multiplication 9 * 5 → 45

/ Division 15 / 3 → 5

% Modulus (Remainder) 10 % 4 → 2

10 % 5 → 0

// Quotient 5 // 3 → 1

18 // 5 → 3

** Exponent 3 ** 5 → 243

3 ** 3 → 27

11 | C h a p t e r 6

Some of these may look confusing, so let’s focus on the ones

you’ve likely never seen before, the Modulus and the Quotient.

A Modulus returns the remainder of two numbers. As we

see above, the remainder of 10 / 4, is two. Thus, if we ever needed to

get the remainder of one number going into another number,

Modulus does just that. Another example is looking at the remainder

when 5 goes into 10. Because five can go into ten without any

remainders, it returns a zero.

The next item to note is the Quotient. The Quotient the value

of one number divided by a number and always rounds down if

there is a remainder, it is “floored”. For instance, if we divide 18

by 5, regularly we get 3.6 . But, if we take a quotient of 18 by 5, the

.6 is floored and the number is rounded down, giving us 3. This is

the basics of a quotient and can be manipulated in many ways

further down the line with programming.

Exponents simple multiple by itself a given number of times.

You probably already know this one, just checking. These are the

main arithmetics you’ll be using in Python and can be extremely

useful in many cases.

Variables

Programmers can’t always just put what they want directly in

a print statement, many times we have to change a plethora of

numbers which could be painstakingly have each put in its own

print statement. Or, we could store values we want in variables.

Simply put, variables store a value to be changed or used later on.

I n t r o d u c t i o n t o P y t h o n | 12

As you progress in programming, variables become more and more

useful.

When we declare a variable, we give it a value and Python is

clever enough to tell whether that value is an integer or string, or

anything we want it to be for the most part.

>>> #We make a variable, a, equal to 5

>>> myNum = 5

>>> constantNum = 10

>>> print(constantNum + myNum)

15

We can also do this with strings:

>>> myName = “Leon”

>>> print(“My name is ” + myName)

My name is Leon

Remember, we can’t say myName = Leon because Python

will think myName equals another variable named Leon, which is

not what we want.

Variables can also do arithmetic too, though. Let’s say we

have integer A and integer B, and we want to get integer C equal to

both squared, then multiplied. How would we do that?

13 | C h a p t e r 6

Here’s what we need to do:

1. Square both A and B, which is multiplying each by itself.

2. Add then together, and that is what C will equal

3. Be sure to follow to Order of Operations or else we won’t get

the answer we want

For our Pseudocode:

 A = 4

 B = 3

 C = Square Root Of((A^2) + (B^2))

 Print(C)

The code:

>>> A = 4

>>> B = 3

>>> C = (A * A) + (B * B)

>>> #Above, by following the order of operations, it will multiple

A time A,

>>> #then B times B, and then add the two.

>>> print(“The value of C is ” + str(C))

The value of C is 25

I n t r o d u c t i o n t o P y t h o n | 14

Booleans

A Boolean is a logic operator, meaning it has two values:

true and false. We can use this in a variety of ways, especially with

conditions in the next unit, but for now let’s see what they look like.

Look at the example below (You’ll want to open a New

Window in IDLE to code this):

a = True ## True must be capitalized

print(str(a))

True

This is all we can do for now with Booleans, but they will be

explored later on in more depth.

The If-Else Statement and Conditions

The If-Else statement is used in Python to test a condition and

provide an output depending on the condition. Essentially, if

something is true, then do this. If not, then do this instead. It is a

fairly straightforward but very useful.

15 | C h a p t e r 6

Look at the example below (You’ll want to open a New

Window in IDLE to code this):

a = 6

if a < 5:

 print(a + 5)

else:

 print(a)

>>> ## This is the output in your IDLE window that should pop up

6

So, what did that code just do?

First, and pretty straightforward, we made a new variable a

and gave it the value 6, as an integer. Next, we began our If-Else

statement.

The syntax to start our If-Else statement if and then

following that with a condition. This tells Python to take in a

condition and if that condition is met, like if a is less than 5, then

print something. If that condition is not met, print something else.

A condition statement comes in a variety of ways and can test

if something is true or false, equal to, less than or greater than, and

more. The condition where was if a is less than 5, print a plus 5; else

just print a. That is the use of a less than condition in the if statement.

I n t r o d u c t i o n t o P y t h o n | 16

What other conditions can we do? Look at the example below

(You’ll want to open a New Window in IDLE to code this):

a = 6

This tests if a equals 5, if a is any number other than 5 than it

won’t print a + 5

if a == 5:

 print(a + 5)

if a is greater than 5

if a > 5:

 print(a)

if a is Less Than OR Equal to ten, then print something

if a <= 10:

 print(“something”)

if a is Greater Than OR Equal to ten, then print anything

if a >= 10:

 print(“anything”)

17 | C h a p t e r 6

We can also test strings as well! When we test strings, Python

can test either string length or the strings themselves. Example:

a = “hi”

B = “hi”

This tests if a has the same string as b

if a == b:

 print(5)

else:

 print(10)

5

a = “hi”

B = “ho”

If they aren’t EXACTLY the same, they are not equal

if a == b:

 print(5)

else:

 print(10)

10

I n t r o d u c t i o n t o P y t h o n | 18

We can compare string lengths as well.

a = “hi”

b = “his”

This tests if a has the same string as b

if a < b:

 print(5)

else:

 print(10)

5

a = “hi”

b = “his”

This tests which string is longer

if a < b:

 print(“b is longer”)

else:

 print(“a is longer”)

B is longer

19 | C h a p t e r 6

Boolean Conditions:

if a is true, then print something

with Boolean variables, you CAN'T be greater than or less than

true or false

if a == true:

 print(“something”)

if a is false, then print despair

if a == false:

 print(“despair”)

Another condition we can use is the not operator, which looks

like !. This can be used to say if something is not equal to something

else, then do this.

Example:

Look at the example below (You’ll want to open a New

Window in IDLE to code this):

a = 6

if a != 5:

 print(a + 5)

a is not equal to five, thus is prints out the rest of the statement

11

I n t r o d u c t i o n t o P y t h o n | 20

This works with Booleans too:

a = True

if a != True:

 print(“Blasphemy!”)

The While Loop

The While Loop is a program that runs a certain piece of

code while a certain condition is met. Once that condition is met, it

moves on and doesn’t run the code inside the loop. For instance, we

could say while a car has gas, the car moves. But when it no longer

has gas, it doesn’t.

Let’s look at the example below:

Initiate our variable

a = 1

Initiate the while loop with our condition statement

while a < 5:

 print(a)

 a += 1 # Ensure there is a way to escape the loop

21 | C h a p t e r 6

This is what the syntax for while loops looks like. We initiate

the while loop with while, and then give it a condition. The code

under and indented the while loop is ran while that condition is met.

It is important to note that if we do not program a way for the

while loop to stop, you will be given an error for having an infinite

(dangerous) loop. That is the reason we have a += 1. What this does

is it says a equals a plus one, essentially just adding one to a each

loop through.

Functions

Functions in Python are blocks of code that run when they

are called. For instance, a function could print a string. Functions are

made with the keyword def and have parentheses after its name.

These parentheses hold the parameters of a function, or what the

function takes in or is given when it is called. This can be a number

or a string, there are many types of parameters functions can be

given, including empty ones. A function with nothing in its

parentheses simply doesn’t take in any parameters.

Let’s examine the syntax of the function below:

First, we start our function

def my_function():

 print(“This is my function.”)

my_function() #we call our function

This is my function.

I n t r o d u c t i o n t o P y t h o n | 22

As we see, we must start the function with def, the state the

name of the function, my_function. We don’t pass it any parameters

in this function because we don’t need to. Then indented and under,

we have the function print something out when it is called.

After we made our function, all we need to do is call it, this

is simply done by stating my_function() below. Again, we don’t put

anything in the parameters when we call it. This will have the

console output to us the print statement in the function.

Let’s look another where we have actual parameters to our

function:

This function will take in a number and multiply it by five

def multiplyBySeven(someNumber):

 return 7 * someNumber

print(multiplyBySeven(5))

35

print(7 + multiplyBySeven(7))

56

Our function takes in a number which is assigned to our

variable we created in the parameter called someNumber.

someNumber is then multiplied by 7 in the function and returns the

result.

23 | C h a p t e r 6

It’s important to note we are not printing anything in the

function but returning a number. This means when we call the

function and pass it a number, the returns a number back that we

could add to another number later or, as seen, printed to the console.

So, what if a program needs something passed to its

parameters but we don’t pass it anything?

Let’s examine the syntax of the function below:

We pass our parameters with pName and have it default to

equal “Leon”

def my_name(pName = “Leon”):

 print(“My name is ” + pName)

my_name(“Miles”)

My name is Miles

my_name() ## No name is passed to the function here

My name is Leon

my_name(“Gary”)

My name is Gary

This is an example of how to make parameters have a default

value if nothing is passed in it when it is called.

