

Chapter

3

Machine

Language

M a c h i n e L a n g u a g e | 2

Machine Language

 Data on its own is useless. We need a way of manipulating it

so we can make the computer do anything. The lowest level

language a computer can understand is known as machine language.

Machine language is a set of instructions and an encoding

scheme, which together allow for data manipulation. Each

instruction using machine language is known as a machine

instruction and can be broken up into two parts: the opcode and the

operand. Instructions are formed by creating bit patterns, commonly

converted to hexadecimal for simplicity. One such instruction may

look like this:

4A 41

 In this example, the most significant digit (referred to as a

“nibble” as it is half of a byte) is the opcode. It tells the computer

what to do with the following numbers, the operand. Our machine

language interpreter would read this as “move the contents of

register 4 into register 1.”

 First, we should talk about how data is stored and used by the

machine. We can separate our data into two parts, the main memory,

and the registers.

Main memory can be thought of as a list of numbers to be read

as instructions or data. For our machine language interpreter, there

are 256 cells of main memory, thus, we can store 256 bytes here. As

3 | C h a p t e r 3

each instruction is made up of 2 bytes, we can have up to 128

different instructions per program. A program counter tells the

machine which instruction to look at and execute. We’ve already

discussed that the machine reads two bytes as one instruction, so to

do this the counter increments by two after each instruction is read.

While instructions can be read from main memory, data cannot be

manipulated from there.

Registers work very differently from main memory. While

they are also a part of the system’s memory, their contents cannot be

read as instructions. Instead, data is loaded into them, and

operations are then performed using their contents. This is because

registers are located inside the CPU, where all the computations take

place. Main memory is only connected to this through a bus which

is used to transfer data. Our machine utilizes 16 registers, each of

which can hold 1 byte.

CPU Architecture

 While our machine uses one hexadecimal digit for each

opcode, using two bytes per instruction total, this isn’t the case for

real machines. Real computers must be able to utilize a larger set of

instructions. Some deal with these instructions by only using the

most basic that are necessary for its function, while some instead opt

to include more advanced instructions as well. These advanced

instructions aren’t necessarily better, as no functionality is added by

including them, but they can be far more convenient. CPUs with less

instructions, but no redundancy, are known as “Reduced Instruction

Set Computers,” or RISC, while those with larger, convenient

M a c h i n e L a n g u a g e | 4

instruction sets are known as “Complex Instruction Set Computers,”

or CISC.

 RISC CPUs focus on having many, one-step commands. This

means multiplying a number may take many instructions, but each

one will only take a short time to perform. CISC, on the other hand,

may only take one instruction to do this, but it may take several steps

to perform this command. Thus, we have a tradeoff consisting

largely of RISC taking more of the programmer’s time and more

memory to store all the instructions, while CISC will take less

memory to store, but each instruction will be slower.

 Because CISC CPUs can have large instruction sets, they

generally will use what are known as variable-length instructions. In

other words, one instruction may take 4 bytes to store, while another

may take only 3, or may even take 6. RISC CPUs use fixed-length

instructions instead, so all instructions will take up the same amount

of memory to store.

The Instruction Cycle

 For a computer to perform an operation, it must go through

what is known as the instruction cycle. This consists of three distinct

steps, known as fetch, decode, and execute.

 Fetching occurs when the instruction register gets updated

with new data. The program counter looks at a byte and sends this

and the next to the instruction register. If the program counter is at

00, then the values at cells 00 and 01 are sent to the instruction

register.

5 | C h a p t e r 3

 Decoding occurs after fetching, as the computer must

determine what the instruction means and how it will be executed.

Here the opcode is separated from the operands.

 Finally, the computer can execute the instruction. An

operation determined by the opcode runs on the operands, and the

program counter gets incremented. This cycle runs until either an

error occurs, or a halt instruction is encountered.

Machine Instructions

 All instructions in a set can be grouped into three categories:

flow control, logic and arithmetic, and data movement.

 Flow control, or JUMP instructions, are used to change where

the program is being executed from. For instance, jumping from

memory cell 00 to memory cell 2E will cause the program to skip

over everything from cell 03 to cell 2D, then continue executing

instructions at 2E. These jumps can be conditional or unconditional.

A conditional jump will look at the value in each register to

determine whether a jump should take place or not. An

unconditional jump, on the other hand, will always occur when

encountered. Both have their unique purposes and are important in

their own ways. Finally, the HALT operation tells the machine that

execution should stop. At this point, the program counter stops

incrementing and the instruction register is no longer updated, thus

the instruction cycle is no longer running.

 Logical and arithmetic operations are those used to

manipulate data within registers. These can largely be thought of

like math operations. For these we have three arithmetic operations

M a c h i n e L a n g u a g e | 6

and three logical operations. Addition is the easiest operation to

understand, as it fits with our classical ideas of math. Our other

arithmetic operations are left and right bit shifts. For logical

operations, we have our binary operations from the first chapter.

These include AND, OR, and XOR.

 Finally, we have data transfer operations. These encompass

our LOAD functions, which move data from main memory to

registers, our STORE function, which moves data from registers to

main memory, and our COPY operation, which copies data from one

register to another. We must use these functions because, as we

discussed, registers and main memory are separate. Arithmetic and

logic operations cannot happen in main memory, and instructions

cannot be executed in registers, so we move them back and forth.

Example of Machine Instructions

 Let’s take a look at each of the specific instructions at our

disposal.

 First, we have the two LOAD instructions, 1RXY and 2RXY.

These appear to be the same, just with different opcodes, but they

have slight differences which are very important. 1RXY loads a value,

while 2RXY loads the value at a memory cell. This means the code 1023

will LOAD the hexadecimal value 23 into register 0. On the other

hand, 2023 means LOAD the value located at memory cell [23] into

register 0. So, 1RXY loads the value XY into register R, while 2RXY

loads the value at [XY] into register R.

 Next, we have our STORE instruction, 3RXY. This again looks

like our LOAD instructions. In this case, we will STORE the value

7 | C h a p t e r 3

located in register R into memory cell [XY]. If we had the code 3110,

we would STORE the value from register 1 into cell [10].

 Lastly for our transfer instructions, we have COPY, 40ST.

Here, our instruction looks very different from the ones before it.

What this means is COPY the value from register S into register T.

Also, important to note is that the “0” can be any value. Thus, the

codes 4012 and 4F12 will execute exactly the same. In both cases, we

would COPY the value from register 1 into register 2.

 Now we have our arithmetic and logical operators.

First is our ADD function, 5RST. This ADDs the values from

registers S and T, then places the result into register R. If we had

5012, we would ADD the value of register 1 to the value of register

2, then place this sum into register 0.

We then have OR, 6RST, AND, 7RST, and XOR, 8RST. These

all work similarly, using the different logic operators. In each case,

we take the value in register S, use the logical operation on it with

register T, then store the result in register R. 6112 would give us the

value at register 1 OR the value at register 2, stored into register 1.

701A would give the value at register 1 AND the value at register A,

placed into register 0. Finally, 8501 gives us the value at register 0

XOR the value at register 1, stored into register 5.

After these are our SHIFT operations, AR0X and BR0X. Like

with the COPY command, the 0’s can be any value, as they aren’t

used in the instruction. AR0X is used to SHIFT register R right by X

bits, and BR0X SHIFTs register R left by X bits. Thus, A094 would

shift register 0 right by four bits, and B004 would shift register 0 left

by four bits.

Lastly, we have our flow control instructions.

M a c h i n e L a n g u a g e | 8

The first of these are our JUMP commands, CRXY and DRXY.

The first of these, CRXY, checks to see if register R is equal to register

0. If it is, the program counter will JUMP to cell [XY] and the program

continues. If it is not, then the program counter simply increments

and continues as if no instruction occurred. The instruction C100 will

check to see if the value in register 1 is equal to the value in register

0. If it is, then the program will JUMP to cell [00], otherwise it will

continue normally. As a helpful side effect of comparing register R

to register 0, we can make our JUMP always occur by setting R to 0.

In other words, C010 will always JUMP to cell [10]. This is because

the computer will check if the value at register 0 is equal to the value

at register 0, which must always be true. In other words, it checks if

the value in register 0 is equal to itself.

DRXY will instead check to see if the value in register R is less

than the value at register 0. If this is true, we will JUMP to cell [XY].

Like with the CRXY operation, this also has an interesting side effect,

although this one is far less useful. In this case, using D025 will never

JUMP to cell [25]. This is because the value in register 0 will never be

less than the value in register 0. In other words, the value in register

0 can never be less than itself. As a result, the instruction can never

cause a JUMP. If we instead used the instruction D125, the computer

would check to see if the value in register 1 is less than the value in

register 0. If it is, then the program counter will JUMP to cell [25].

Our final operation is the HALT instruction, E000. When the

opcode “E” is encountered, the machine stops reading new

instructions, and the program terminates, or HALTs. This is how we

can safely end a program without getting an error. Once again, the

0’s can be replaced with any values, so the instructions E000 and

E9F1 will both just HALT the machine.

9 | C h a p t e r 3

All our remaining possible opcodes (0, 9, and F) will only give

us errors, as they do not correspond to any instructions.

Programs and Data

 Main memory is used to store more than just instructions. We

may also want to simply store data to be accessed and written to.

This data does not need to be read by the instruction register, but

instead can be used to store the data our program might use. For

instance, here we could store things such as the values we are using

for a complex equation.

 Data and programs can be stored anywhere in main memory

and are essentially indistinguishable. This makes programs easy to

write to and read from during execution. While this can be very

useful for having a dynamic program, this also makes running into

errors far easier, as we can no longer determine exactly how the

program should be laid out as easily.

